深度学习目标检测算法 基于训练好的YOLOv8权重建立深度学习医疗垃圾检测系统 识别医院医疗垃圾数据集中的塑料袋药瓶针管 静脉导管 输液袋棉球等

深度学习目标检测算法 基于训练好的YOLOv8权重建立一个深度学习医疗垃圾检测系统
以下文字及代码仅供参考。


在这里插入图片描述

医疗垃圾检测数据集2756张,8比2划分为训练集和验证集,训练集2204张,验证集552张,9类,分类为:‘Plastic bags’, ‘Metal’, ‘IV Bag’, ‘Cotton with blood’, ‘Medicine Bottle’, ‘Glucose Drip’, ‘IV’, ‘syringe’, ‘vials’


在这里插入图片描述

医疗垃圾检测 YOLO 数据集(类别中英对照表)

中文类别名称英文类别名称图片数量标注框数量训练集图片数(约80%)验证集图片数(约20%)
塑料袋Plastic bags33963327168
金属Metal43859135088
输液袋IV Bag38058630476
带血棉球Cotton with blood533583426107
药瓶Medicine Bottle23555418847
葡萄糖输液管Glucose Drip37465229975
静脉导管IV45256536290
注射器Syringe45091836090
小药瓶/安瓿瓶Vials430105234486
总计Total275661142204 (80%)552 (20%)

同学,从环境设置、数据准备、模型训练、超参数调整、模型评估以及如何进行单张和批量图像的推理。
在这里插入图片描述

环境搭建

确保安装了必要的依赖库:

pip install ultralytics opencv-python-headless

数据配置

tx同学,首先,创建一个data.yaml文件来描述你的数据集路径和类别信息。假设你的数据已经按照如下结构组织:

  • dataset/
    • images/
      • train/
      • val/
    • labels/
      • train/
      • val/

data.yaml内容如下:

train: ./dataset/images/train/
val: ./dataset/images/val/

nc: 9  # 类别数量
names: ['Plastic bags', 'Metal', 'IV Bag', 'Cotton with blood', 'Medicine Bottle', 'Glucose Drip', 'IV', 'Syringe', 'Vials']  # 类别名称

模型训练

加载YOLOv8模型并开始训练:

from ultralytics import YOLO

# 加载预训练的YOLOv8模型或从头开始训练
model = YOLO('yolov8n.yaml')  # 使用YOLOv8 nano架构作为示例

# 开始训练
results = model.train(data='path/to/data.yaml', epochs=100, imgsz=640, batch=16)

在这个例子中,我们设置了epochs为100,输入图像尺寸imgsz为640,批次大小batch为16。你可以根据硬件资源调整这些参数。

超参数配置

在调用model.train()时,可以通过传递额外的参数来调整超参数,例如学习率(lr0)、动量(momentum)等。更多选项可以参考官方文档

模型推理

单张图片推理
# 对单张图片进行推理
results = model.predict(source='path/to/test_image.jpg', save=True, conf=0.25)

for result in results:
    print(result.boxes)  # 输出检测框信息
批量推理

对整个目录进行批量推理:

# 对整个目录进行批量推理
results = model.predict(source='path/to/test_dir/', save=True, conf=0.25)

性能评估

在验证集上评估模型性能:

metrics = model.val()  # 在验证集上评估模型性能
print(f"Model mAP: {metrics.box.map}")  # 输出mAP值

完整代码示例

以下是完整的代码示例,包括环境搭建、数据配置、模型训练、超参数配置、模型推理及性能评估:

from ultralytics import YOLO
import os

# 确保已安装必要库
# pip install ultralytics opencv-python-headless

# 加载YOLOv8模型
model = YOLO('yolov8n.yaml')

# 训练模型
results = model.train(data='path/to/data.yaml', epochs=100, imgsz=640, batch=16)

# 调整超参数示例
# 更多超参数可查阅官方文档
# results = model.train(data='path/to/data.yaml', epochs=100, imgsz=640, batch=16, lr0=0.01, momentum=0.937)

# 单张图片推理
result = model.predict(source='path/to/test_image.jpg', save=True, conf=0.25)

# 批量推理
results = model.predict(source='path/to/test_dir/', save=True, conf=0.25)

# 性能评估
metrics = model.val()
print(f"Model mAP: {metrics.box.map}")

请将path/to/data.yamlpath/to/test_image.jpgpath/to/test_dir/替换为你实际的文件路径。通过上述步骤,你应该能够成功地搭建环境、训练模型、进行推理,并评估其性能。

仅供参考


基于训练好的YOLOv8权重建立一个深度学习医疗垃圾检测系统,涉及从加载模型到部署的全过程。以下是详细的步骤和代码示例:

1. 环境准备

确保你的环境中安装了所有必要的依赖库。对于YOLOv8,可以这样安装:

pip install ultralytics opencv-python-headless

2. 加载训练好的模型权重

首先,你需要加载之前训练好的YOLOv8模型权重。假设你已经保存了训练好的模型文件(如best.pt)。

from ultralytics import YOLO

# 加载训练好的模型权重
model = YOLO('path/to/your/best.pt')  # 替换为你的模型权重文件路径

3. 模型推理

单张图片推理

下面是一个对单张图片进行推理的例子:

import cv2

def detect_image(image_path):
    results = model.predict(source=image_path, save=True, conf=0.25)  # 设置置信度阈值
    
    for result in results:
        img = cv2.imread(image_path)
        for box in result.boxes:
            x1, y1, x2, y2 = [int(x) for x in box.xyxy]
            cls = int(box.cls.item())
            label = f'{result.names[cls]} {box.conf.item():.2f}'
            cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 0), 2)
            cv2.putText(img, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
        
        cv2.imshow('Detected Image', img)
        cv2.waitKey(0)
        cv2.destroyAllWindows()

detect_image('path/to/test_image.jpg')  # 替换为你的测试图片路径
批量推理

如果你想对整个目录中的图片进行批量处理,同学,可以这样做:

import os

def detect_images_in_dir(directory_path):
    for filename in os.listdir(directory jadx

看起来我的回复被意外截断了。让我们继续完成关于如何进行批量推理的部分,并提供完整的代码示例。

完整的批量推理实现

为了对某个目录下的所有图片进行批量推理并显示结果,你可以使用以下代码:

import os
from ultralytics import YOLO
import cv2

# 加载训练好的模型权重
model = YOLO('path/to/your/best.pt')  # 替换为你的模型权重文件路径

def detect_images_in_dir(directory_path):
    """
    对指定目录下的所有图片进行推理。
    :param directory_path: 存放待检测图片的目录路径
    """
    for filename in os.listdir(directory_path):
        if filename.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.gif')):  # 支持的图片格式
            image_path = os.path.join(directory_path, filename)
            results = model.predict(source=image_path, save=True, conf=0.25)  # 设置置信度阈值
            
            for result in results:
                img = cv2.imread(image_path)
                for box in result.boxes:
                    x1, y1, x2, y2 = [int(x) for x in box.xyxy]
                    cls = int(box.cls.item())
                    label = f'{result.names[cls]} {box.conf.item():.2f}'
                    cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 0), 2)
                    cv2.putText(img, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
                
                cv2.imshow('Detected Image', img)
                cv2.waitKey(0)
                cv2.destroyAllWindows()

# 调用函数处理特定目录下的所有图片
detect_images_in_dir('path/to/test_dir/')  # 替换为你的测试图片目录路径

4. 构建用户界面(可选)

为了让系统更加用户友好,可以考虑构建一个简单的图形用户界面(GUI)。这里给出一个简单的Tkinter例子来打开本地图片并显示检测结果:

import tkinter as tk
from tkinter import filedialog
from PIL import Image, ImageTk

def open_image():
    file_path = filedialog.askopenfilename()
    if not file_path:
        return
    
    results = model.predict(source=file_path, save=False)
    
    img = Image.open(file_path)
    img = img.resize((600, 600))  # 根据需要调整大小
    img_tk = ImageTk.PhotoImage(img)
    
    # 假设你已经将预测结果绘制回原图
    panel.configure(image=img_tk)
    panel.image = img_tk

root = tk.Tk()
panel = tk.Label(root)
panel.pack(pady=10)

btn = tk.Button(root, text="Open Image", command=open_image)
btn.pack(side="bottom")

root.mainloop()

5. 部署

  • 导出模型:为了方便部署,可以将模型导出为ONNX或其他适合部署的格式。

    success = model.export(format="onnx")
    
  • Web服务:利用Flask或FastAPI创建一个RESTful API服务,接收上传的图片并返回检测结果。

  • 移动应用:通过TensorFlow Lite或者ONNX Runtime将模型部署到移动端。

基于训练好的YOLOv8权重建立一个深度学习医疗垃圾检测系统。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值