利用yolov8 Mask R-CNN处理水下侧扫声呐图像数据集 目标检测和实例分割。处理识别水下侧扫声呐图像沉船数据集

利用yolov8 Mask R-CNN处理水下侧扫声呐图像数据集 目标检测和实例分割。处理识别水下侧扫声呐图像沉船数据集


以下文字及代码仅供参考。

水下侧扫声呐图像数据集,沉船,png标签格式

在这里插入图片描述1
在这里插入图片描述
由于这些图像具有独特的特征和挑战(如低对比度、噪声等),需要一个能够有效处理这类数据的模型。

1. 数据预处理

在开始训练之前,确保对数据进行适当的预处理:

  • 归一化:将像素值归一化到[0, 1]或[-1, 1]范围内。
  • 增强:使用旋转、翻转、缩放等方法增加数据多样性。
  • 去噪:应用滤波器减少图像中的噪声。
    在这里插入图片描述

2. 模型选择

YOLOv8

YOLOv8目标检测模型,适用于实时检测任务。它在速度和准确性之间取得了良好的平衡,并且可以很好地处理各种类型的图像数据。

from ultralytics import YOLO

# 加载YOLOv8模型
model = YOLO('yolov8n.yaml')  # 使用YOLOv8 nano架构作为示例

# 开始训练
results = model.train(data='path/to/data.yaml', epochs=100, imgsz=640, batch=16)
Mask R-CNN

需要检测沉船的位置,还需要分割出沉船的具体区域,Mask R-CNN是一个很好的选择。它可以同时进行目标检测和实例分割。

import torch
from torchvision.models.detection import maskrcnn_resnet50_fpn

# 加载Mask R-CNN模型
model = maskrcnn_resnet50_fpn(pretrained=True)

# 将模型设置为训练模式
model.train()

# 定义损失函数和优化器
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9)

# 训练循环
for epoch in range(num_epochs):
    for images, targets in dataloader:
        optimizer.zero_grad()
        outputs = model(images)
        loss = criterion(outputs, targets)
        loss.backward()
        optimizer.step()

3. 训练过程

数据集划分

将数据集划分为训练集、验证集和测试集,通常比例为70%、15%和15%。

配置文件

创建一个data.yaml文件来描述你的数据集路径和类别信息:

train: ./dataset/images/train/
val: ./dataset/images/val/

nc: 1  # 类别数量(假设只有沉船一类)
names: ['Shipwreck']  # 类别名称
训练参数调整

根据数据集的特点和硬件资源,调整训练参数,如学习率、批次大小、输入图像尺寸等。

4. 性能评估

在验证集上评估模型性能,并根据结果调整模型和训练策略。

metrics = model.val()  # 在验证集上评估模型性能
print(f"Model mAP: {metrics.box.map}")  # 输出mAP值

利用训练好的权重建立侧扫声纳图像检测系统,

1. 环境准备

确保你的环境中安装了所有必要的依赖库。对于YOLOv8,可以这样安装:

pip install ultralytics opencv-python-headless

2. 加载训练好的模型权重

首先,你需要加载之前训练好的YOLOv8模型权重。假设你已经保存了训练好的模型文件(如best.pt)。

from ultralytics import YOLO

# 加载训练好的模型权重
model = YOLO('path/to/your/best.pt')  # 替换为你的模型权重文件路径

3. 模型推理

单张图片推理

下面是一个对单张图片进行推理的例子:

import cv2

def detect_image(image_path):
    results = model.predict(source=image_path, save=True, conf=0.25)  # 设置置信度阈值
    
    for result in results:
        img = cv2.imread(image_path)
        for box in result.boxes:
            x1, y1, x2, y2 = [int(x) for x in box.xyxy]
            cls = int(box.cls.item())
            label = f'{result.names[cls]} {box.conf.item():.2f}'
            cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 0), 2)
            cv2.putText(img, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
        
        cv2.imshow('Detected Image', img)
        cv2.waitKey(0)
        cv2.destroyAllWindows()

detect_image('path/to/test_image.png')  # 替换为你的测试图片路径
批量推理

如果你想对整个目录中的图片进行批量处理,可以这样做:

import os

def detect_images_in_dir(directory_path):
    """
    对指定目录下的所有图片进行推理。
    :param directory_path: 存放待检测图片的目录路径
    """
    for filename in os.listdir(directory_path):
        if filename.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.gif')):  # 支持的图片格式
            image_path = os.path.join(directory_path, filename)
            results = model.predict(source=image_path, save=True, conf=0.25)  # 设置置信度阈值
            
            for result in results:
                img = cv2.imread(image_path)
                for box in result.boxes:
                    x1, y1, x2, y2 = [int(x) for x in box.xyxy]
                    cls = int(box.cls.item())
                    label = f'{result.names[cls]} {box.conf.item():.2f}'
                    cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 0), 2)
                    cv2.putText(img, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
                
                cv2.imshow('Detected Image', img)
                cv2.waitKey(0)
                cv2.destroyAllWindows()

# 调用函数处理特定目录下的所有图片
detect_images_in_dir('path/to/test_dir/')  # 替换为你的测试图片目录路径

4. 构建用户界面

为了让系统更加用户友好,可以考虑构建一个简单的图形用户界面(GUI)。这里给出一个简单的Tkinter例子来打开本地图片并显示检测结果:

import tkinter as tk
from tkinter import filedialog
from PIL import Image, ImageTk

def open_image():
    file_path = filedialog.askopenfilename()
    if not file_path:
        return
    
    results = model.predict(source=file_path, save=False)
    
    img = Image.open(file_path)
    img = img.resize((600, 600))  # 根据需要调整大小
    img_tk = ImageTk.PhotoImage(img)
    
    # 假设你已经将预测结果绘制回原图
    panel.configure(image=img_tk)
    panel.image = img_tk

root = tk.Tk()
panel = tk.Label(root)
panel.pack(pady=10)

btn = tk.Button(root, text="Open Image", command=open_image)
btn.pack(side="bottom")

root.mainloop()

5. 部署

  • 导出模型:为了方便部署,可以将模型导出为ONNX或其他适合部署的格式。

    success = model.export(format="onnx")
    
  • Web服务:利用Flask或FastAPI创建一个RESTful API服务,接收上传的图片并返回检测结果。

  • 移动应用:通过TensorFlow Lite或者ONNX Runtime将模型部署到移动端。

基于训练好的YOLOv8权重建立一个侧扫声纳图像检测系统。这个系统不仅能对单一图像做出准确的分类,还能扩展为支持批量处理、GUI交互以及多种部署方式

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值