如何使用深度学习框架进行道路裂缝的语义分割任务,并附上详细的训练代码。
数据集介绍
该数据集包含道路裂缝的图像及其对应的标签掩膜,适合用于语义分割任务。数据集已准备好,包含图像和相应的标签掩膜。具体信息如下:
- 训练集:包含一定数量的图像和标签掩膜。
- 验证集:包含一定数量的图像和标签掩膜。
- 测试集:包含一定数量的图像和标签掩膜。
目标分割标签为:
- 背景:Background
- 裂缝:Crack
数据集准备
假设你的数据集目录结构如下:
road_cracks/
├── train/
│ ├── images/
│ └── masks/
├── valid/
│ ├── images/
│ └── masks/
├── test/
│ ├── images/
│ └── masks/
└── README.txt # 数据说明
其中:
train/images/
存放训练集的图像。train/masks/
存放训练集的标签掩膜。valid/images/
存放验证集的图像。valid/masks/
存放验证集的标签掩膜。test/images/
存放测试集的图像。test/masks/
存放测试集的标签掩膜。
深度学习框架选择
为了进行语义分割任务,我们可以选择使用PyTorch框架以及一个常用的分割网络架构,例如U-Net。
安装依赖
确保你已经安装了PyTorch和其他必要的依赖库:
pip install torch torchvision
数据加载器
我们需要定义一个数据加载器来读取图像和标签掩膜:
import torch
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
import os
import numpy as np
from PIL import Image
class RoadCrackDataset(Dataset):
def __init__(self, images_dir, masks_dir, transform=None):
self.images_dir = images_dir
self.masks_dir = masks_dir
self.transform = transform
self.image_filenames = [os.path.join(images_dir, f) for f in os.listdir(images_dir)]
self.mask_filenames = [os.path.join(masks_dir, f) for f in os.listdir(masks_dir)]
def __len__(self):
return len(self.image_filenames)
def __getitem__(self, idx):
if torch.is_tensor(idx):
idx = idx.tolist()
img_name &