森林火灾类——分割——如何构建和使用基于遥感图像的森林过火区域估计与严重程度评估数据集的详细步骤和代码。我们将使用Python和深度学习框架(如PyTorch)来实现这一任务。

基于遥感图像的森林过火区域估计与严重程度评估数据集,提供过火前后的哨兵1和哨兵2图像,并提供过火区域mask图,共14GB数据。在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
如何构建和使用基于遥感图像的森林过火区域估计与严重程度评估数据集的详细步骤和代码。我们将使用Python和深度学习框架(如PyTorch)来实现这一任务。

项目结构
深色版本
ForestFireDetection/
├── data/
│ ├── sentinel1/
│ │ ├── pre_fire/
│ │ └── post_fire/
│ ├── sentinel2/
│ │ ├── pre_fire/
│ │ └── post_fire/
│ ├── masks/
│ └── metadata.csv
├── models/
│ └── unet/
├── utils/
│ ├── data_loader.py
│ ├── metrics.py
│ └── plot.py
├── main.py
├── train.py
├── infer.py
└── README.md

  1. 数据集准备
    数据集格式
    sentinel1/:包含哨兵1卫星的过火前后图像。
    sentinel2/:包含哨兵2卫星的过火前后图像。
    masks/:包含过火区域的掩码图。
    metadata.csv:包含图像的元数据信息,如图像路径、过火区域面积等。
    数据集目录结构
    深色版本
    data/
    ├── sentinel1/
    │ ├── pre_fire/
    │ └── post_fire/
    ├── sentinel2/
    │ ├── pre_fire/
    │ └── post_fire/
    ├── masks/
    └── metadata.csv
  2. 安装依赖
    确保安装了必要的依赖项:

bash
深色版本
pip install torch torchvision pandas numpy matplotlib scikit-image
3. 数据加载
编写一个数据加载脚本utils/data_loader.py:

python
深色版本
import os
import pandas as pd
import numpy as np
import torch
from torch.utils.data import Dataset, DataLoader
from skimage import io

class ForestFireDataset(Dataset):
def init(self, csv_file, root_dir, transform=None):
self.metadata = pd.read_csv(csv_file)
self.root_dir = root_dir
self.transform = transform

def __len__(self):
    return len(self.metadata)

def __getitem__(self, idx):
    if torch.is_tensor(idx):
        idx = idx.tolist()

    img_name = os.path.join(self.root_dir, self.metadata.iloc[idx, 0])
    mask_name = os.path.join(self.root_dir, self.metadata.ilo
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值