YOLOv11的改进方法,yolo系列改进措施 研究人员和开发者快速提升模型性能、实现轻量化和优化 ,Yolov11改进大全,如何改进yolov11

YOLOv11的改进方法,帮助研究人员和开发者快速提升模型性能、实现轻量化和优化 ,Yolov11改进大全,如何改进yolov11


以下文章只附部分,改进代码
提供了
一些YOLOv11改进。这些改进方法通常涉及网络架构、特征融合、注意力机制等方面。以下是基于文件名的推测和简要介绍: 在这里插入图片描述

  1. yolo11_BiFormer(big)

    • BiFormer:结合了Transformer和卷积网络的优点,可能用于特征提取和融合。
    • big:可能表示使用了更大的模型架构,以提高检测精度。
  2. yolo11_Detect_ASFF

    • ASFF (Adaptive Spatial Feature Fusion):自适应空间特征融合,用于不同尺度特征的融合,提高检测精度。
  3. yolo11_PA

    • PA (Position Attention):位置注意力机制,用于增强模型对特定位置特征的注意力。
  4. yolo11_ese

    • ESE (Enhanced Spatial Embedding):增强的空间嵌入,可能用于改进特征图的表示。
  5. yolo11ACmix(big)

    • ACmix:可能是一种混合注意力机制,结合了空间和通道注意力。
    • big:同样表示使用了更大的模型架构。
  6. yolo11ASF

    • ASF (Adaptive Spatial Feature):自适应空间特征,可能用于动态调整特征图的权重。
  7. yolo11ASF2

    • ASF2:可能是ASF的改进版本,进一步优化了特征融合。
  8. yolo11ASPP

    • ASPP (Atrous Spatial Pyramid Pooling):空洞空间金字塔池化,用于多尺度特征融合。
  9. yolo11BiFPN

    • BiFPN (Bi-directional Feature Pyramid Network):双向特征金字塔网络,用于高效特征融合。
  10. yolo11CA

    • CA (Channel Attention):通道注意力机制,用于增强模型对特定通道特征的注意力。
  11. yolo11CARAFE

    • CARAFE (Content-Aware ReAssembly of FEatures):内容感知特征重组,用于改进特征图的重建。
  12. yolo11CBAM(buliang)

    • CBAM (Convolutional Block Attention Module):卷积块注意力模块,结合了空间和通道注意力。
    • buliang:可能是一个特定的配置或改进版本。
  13. yolo11CoordConv

    • CoordConv:坐标卷积,引入坐标信息以增强特征表示。
  14. yolo11COTA

    • COTA (Channel-Object Attention):通道-对象注意力机制,用于增强模型对特定对象的注意力。
  15. yolo11CSPStage

    • CSP (Cross Stage Partial Networks):跨阶段部分网络,用于改进特征融合。
  16. yolo11DBB

    • DBB (Dynamic Bottleneck Block):动态瓶颈块,用于动态调整网络的宽度。
  17. yolo11Detect_AFPN4

    • AFPN (Adaptive Feature Pyramid Network):自适应特征金字塔网络,用于多尺度特征融合。
  18. yolo11DSConv

    • DSConv (Depthwise Separable Convolution):深度可分离卷积,用于减少计算量。
  19. yolo11Dysample

    • Dysample:动态采样,可能用于动态调整特征图的分辨率。
  20. yolo11ECA

    • ECA (Enhanced Channel Attention):增强通道注意力机制,用于改进通道特征的表示。
  21. yolo11EfficientViT

    • EfficientViT:高效的视觉Transformer,结合了Transformer和卷积网络的优点。
  22. yolo11GAM(buliang)

    • GAM (Global Attention Module):全局注意力模块,用于增强模型对全局特征的注意力。
    • buliang:可能是一个特定的配置或改进版本。

这些改进方法通常旨在提高模型的检测精度、速度和鲁棒性。具体实现细节和效果需要参考相关的论文和代码实现。如果你有具体的文件内容或代码,可以进一步详细分析。
要提供具体的代码示例,我们需要参考相关的论文和开源实现。虽然我无法直接提供这些文件的具体代码,但我可以基于这些文件名推测可能的改进方法,并给出一些通用的代码片段。这些代码片段可以作为参考,帮助你理解如何实现这些改进。

1. yolo11_BiFormer(big)

BiFormer 结合了Transformer和卷积网络的优点。

import torch
import torch.nn as nn

class BiFormer(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(BiFormer, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)
        self.transformer = nn.TransformerEncoderLayer(d_model=out_channels, nhead=8)

    def forward(self, x):
        x = self.conv(x)
        x = x.permute(2, 3, 0, 1).flatten(2).permute(2, 0, 1)  # [B, C, H, W] -> [H*W, B, C]
        x = self.transformer(x)
        x = x.permute(1, 2, 0).view(x.size(0), x.size(1), x.size(2), -1)  # [H*W, B, C] -> [B, C, H, W]
        return x

# Example usage
bi_former = BiFormer(in_channels=256, out_channels=256)

2. yolo11_Detect_ASFF

ASFF (Adaptive Spatial Feature Fusion) 用于不同尺度特征的融合。

import torch
import torch.nn as nn

class ASFF(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(ASFF, self).__init__()
        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1)
        self.conv2 = nn.Conv2d(in_channels, out_channels, kernel_size=1)
        self.conv3 = nn.Conv2d(in_channels, out_channels, kernel_size=1)
        self.conv4 = nn.Conv2d(in_channels, out_channels, kernel_size=1)
        self.conv_out = nn.Conv2d(out_channels * 4, out_channels, kernel_size=1)

    def forward(self, x1, x2, x3, x4):
        x1 = self.conv1(x1)
        x2 = self.conv2(x2)
        x3 = self.conv3(x3)
        x4 = self.conv4(x4)
        
        x = torch.cat([x1, x2, x3, x4], dim=1)
        x = self.conv_out(x)
        return x

# Example usage
asff = ASFF(in_channels=256, out_channels=256)

3. yolo11_PA

PA (Position Attention) 用于增强模型对特定位置特征的注意力。

import torch
import torch.nn as nn

class PositionAttention(nn.Module):
    def __init__(self, in_channels):
        super(PositionAttention, self).__init__()
        self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=1)
        self.softmax = nn.Softmax(dim=1)

    def forward(self, x):
        B, C, H, W = x.size()
        proj_query = self.conv(x).view(B, C, -1).permute(0, 2, 1)
        proj_key = self.conv(x).view(B, C, -1)
        energy = torch.bmm(proj_query, proj_key)
        attention = self.softmax(energy)
        proj_value = self.conv(x).view(B, C, -1)
        out = torch.bmm(proj_value, attention.permute(0, 2, 1))
        out = out.view(B, C, H, W)
        return out

# Example usage
pa = PositionAttention(in_channels=256)

4. yolo11_ese

ESE (Enhanced Spatial Embedding) 用于改进特征图的表示。

import torch
import torch.nn as nn

class EnhancedSpatialEmbedding(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(EnhancedSpatialEmbedding, self).__init__()
        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)
        self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1)

    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        return x

# Example usage
ese = EnhancedSpatialEmbedding(in_channels=256, out_channels=256)

5. yolo11ACmix(big)

ACmix 结合了空间和通道注意力。

import torch
import torch.nn as nn

class ACmix(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(ACmix, self).__init__()
        self.spatial_attention = nn.Conv2d(in_channels, out_channels, kernel_size=1)
        self.channel_attention = nn.Conv2d(in_channels, out_channels, kernel_size=1)

    def forward(self, x):
        spatial = self.spatial_attention(x)
        channel = self.channel_attention(x)
        out = spatial + channel
        return out

# Example usage
acmix = ACmix(in_channels=256, out_channels=256)

6. yolo11ASF

ASF (Adaptive Spatial Feature) 用于动态调整特征图的权重。

import torch
import torch.nn as nn

class AdaptiveSpatialFeature(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(AdaptiveSpatialFeature, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)
        self.attention = nn.Conv2d(out_channels, out_channels, kernel_size=1)

    def forward(self, x):
        x = self.conv(x)
        attention = self.attention(x)
        out = x * attention
        return out

# Example usage
asf = AdaptiveSpatialFeature(in_channels=256, out_channels=256)

7. yolo11ASF2

ASF2 可能是ASF的改进版本。

import torch
import torch.nn as nn

class AdaptiveSpatialFeature2(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(AdaptiveSpatialFeature2, self).__init__()
        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)
        self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1)
        self.attention = nn.Conv2d(out_channels, out_channels, kernel_size=1)

    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        attention = self.attention(x)
        out = x * attention
        return out

# Example usage
asf2 = AdaptiveSpatialFeature2(in_channels=256, out_channels=256)

8. yolo11ASPP

ASPP (Atrous Spatial Pyramid Pooling) 用于多尺度特征融合。

import torch
import torch.nn as nn

class ASPP(nn.Module):
    def __init__(self, in_channels, out_channels, rates=[6, 12, 18]):
        super(ASPP, self).__init__()
        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1)
        self.conv2 = nn.Conv2d(in_channels, out_channels, kernel_size=3, dilation=rates[0], padding=rates[0])
        self.conv3 = nn.Conv2d(in_channels, out_channels, kernel_size=3, dilation=rates[1], padding=rates[1])
        self.conv4 = nn.Conv2d(in_channels, out_channels, kernel_size=3, dilation=rates[2], padding=rates[2])
        self.conv_out = nn.Conv2d(out_channels * 4, out_channels, kernel_size=1)

    def forward(self, x):
        x1 = self.conv1(x)
        x2 = self.conv2(x)
        x3 = self.conv3(x)
        x4 = self.conv4(x)
        
        x = torch.cat([x1, x2, x3, x4], dim=1)
        x = self.conv_out(x)
        return x

# Example usage
aspp = ASPP(in_channels=256, out_channels=256)

9. yolo11BiFPN

**BiFPN (Bi-directional Feature Pyramid Network)** 用于高效特征融合。

```python
import torch
import torch.nn as nn

class BiFPN(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(BiFPN, self).__init__()
        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1)
        self.conv2 = nn.Conv2d(in_channels, out_channels, kernel_size=1)
        self.conv3 = nn.Conv2d(in_channels, out_channels, kernel_size=

附  v5v8v10的,附xiaoguaishou ,mangguo 等

suo有的改进点都能跑通,不需要再进行代码编写,直接换上自己的数据集就能开始训练!也有部分是参考专栏,自己编译。根据你的需要来跑。
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

YOLOv8模型和Ultralytics框架,

展示如何在不同配置文件中实现特定的模块或技术。这些配置文件(如yolov8-BIMAPFN.yaml, yolov8-C2f-AdditiveBlock.yaml等)用于定义模型架构、训练参数和其他设置。

1. BIMAPFN (Bi-directional Multi-scale Attention Pyramid Fusion Network)

# yolov8-BIMAPFN.yaml

# 基础模型配置
model:
  # ... 其他基础配置 ...

  backbone:
    - [C1, [64, 3]]  # 卷积层
    - [BIMAPFN, [64, 128, 256, 512, 1024]]  # BIMAPFN模块

  neck:
    - [FPN, [64, 128, 256, 512, 1024]]  # 特征金字塔网络

  head:
    - [Detect, [num_classes, anchors]]

# 训练配置
train:
  epochs: 300
  batch_size: 16
  imgsz: 640
  # ... 其他训练参数 ...

2. AdditiveBlock with CGLU (Conditional Gated Linear Unit)

# yolov8-C2f-AdditiveBlock-CGLU.yaml

model:
  # ... 其他基础配置 ...

  backbone:
    - [C1, [64, 3]]
    - [AdditiveBlock, [64, 128, 'CGLU']]  # 使用CGLU的AdditiveBlock

  neck:
    - [FPN, [64, 128, 256, 512, 1024]]

  head:
    - [Detect, [num_classes, anchors]]

train:
  epochs: 300
  batch_size: 16
  imgsz: 640
  # ... 其他训练参数 ...

3. Aggregated Attention Module

# yolov8-AggregatedAtt.yaml

model:
  # ... 其他基础配置 ...

  backbone:
    - [C1, [64, 3]]
    - [AggregatedAttention, [64, 128]]  # 聚合注意力模块

  neck:
    - [FPN, [64, 128, 256, 512, 1024]]

  head:
    - [Detect, [num_classes, anchors]]

train:
  epochs: 300
  batch_size: 16
  imgsz: 640
  # ... 其他训练参数 ...

4. AKConv (Adaptive Kernel Convolution)

# yolov8-AKConv.yaml

model:
  # ... 其他基础配置 ...

  backbone:
    - [C1, [64, 3]]
    - [AKConv, [64, 128]]  # 自适应核卷积模块

  neck:
    - [FPN, [64, 128, 256, 512, 1024]]

  head:
    - [Detect, [num_classes, anchors]]

train:
  epochs: 300
  batch_size: 16
  imgsz: 640
  # ... 其他训练参数 ...

5. CaFormer with CGLU

# yolov8-CaFormer-CGLU.yaml

model:
  # ... 其他基础配置 ...

  backbone:
    - [C1, [64, 3]]
    - [CaFormer, [64, 128, 'CGLU']]  # 使用CGLU的CaFormer模块

  neck:
    - [FPN, [64, 128, 256, 512, 1024]]

  head:
    - [Detect, [num_classes, anchors]]

train:
  epochs: 300
  batch_size: 16
  imgsz: 640
  # ... 其他训练参数 ...

继续提供其他配置文件的改进代码示例。这些配置文件展示了如何在YOLOv8模型中集成不同的模块和架构,以提高模型性能或适应特定任务需求。

6. SEAMHead (Spatial and Channel-wise Attention Module Head)

# yolov8-SEAMHead.yaml

model:
  # ... 其他基础配置 ...

  backbone:
    - [C1, [64, 3]]
    - [BottleneckCSP, [64, 128, 3]]

  neck:
    - [FPN, [64, 128, 256, 512, 1024]]

  head:
    - [SEAMHead, [num_classes, anchors]]  # 使用SEAMHead模块

train:
  epochs: 300
  batch_size: 16
  imgsz: 640
  # ... 其他训练参数 ...

7. BiFPN (Bidirectional Feature Pyramid Network)

# yolov8-bifpn.yaml

model:
  # ... 其他基础配置 ...

  backbone:
    - [C1, [64, 3]]
    - [BottleneckCSP, [64, 128, 3]]

  neck:
    - [BiFPN, [64, 128, 256, 512, 1024]]  # 使用BiFPN模块

  head:
    - [Detect, [num_classes, anchors]]

train:
  epochs: 300
  batch_size: 16
  imgsz: 640
  # ... 其他训练参数 ...

8. MobileNetV4

# yolov8-mobilenetv4.yaml

model:
  # ... 其他基础配置 ...

  backbone:
    - [MobileNetV4, [64, 3]]  # 使用MobileNetV4作为骨干网络

  neck:
    - [FPN, [64, 128, 256, 512, 1024]]

  head:
    - [Detect, [num_classes, anchors]]

train:
  epochs: 300
  batch_size: 16
  imgsz: 640
  # ... 其他训练参数 ...

9. A-Down (Adaptive Down-sampling)

# yolov8-A-Down.yaml

model:
  # ... 其他基础配置 ...

  backbone:
    - [C1, [64, 3]]
    - [A-Down, [64, 128]]  # 使用自适应下采样模块

  neck:
    - [FPN, [64, 128, 256, 512, 1024]]

  head:
    - [Detect, [num_classes, anchors]]

train:
  epochs: 300
  batch_size: 16
  imgsz: 640
  # ... 其他训练参数 ...

10. AlIFRep (Adaptive Leaky Integrate-and-Fire Repeated)

# yolov8-AlIFRep.yaml

model:
  # ... 其他基础配置 ...

  backbone:
    - [C1, [64, 3]]
    - [AlIFRep, [64, 128]]  # 使用AlIFRep模块

  neck:
    - [FPN, [64, 128, 256, 512, 1024]]

  head:
    - [Detect, [num_classes, anchors]]

train:
  epochs: 300
  batch_size: 16
  imgsz: 640
  # ... 其他训练参数 ...

11. ASF-DySample (Adaptive Spatial Fusion with Dynamic Sampling)

# yolov8-ASF-DySample.yaml

model:
  # ... 其他基础配置 ...

  backbone:
    - [C1, [64, 3]]
    - [BottleneckCSP, [64, 128, 3]]

  neck:
    - [ASF-DySample, [64, 128, 256, 512, 1024]]  # 使用ASF-DySample模块

  head:
    - [Detect, [num_classes, anchors]]

train:
  epochs: 300
  batch_size: 16
  imgsz: 640
  # ... 其他训练参数 ...

12. ASF-P2 (Adaptive Spatial Fusion with P2)

# yolov8-ASF-P2.yaml

model:
  # ... 其他基础配置 ...

  backbone:
    - [C1, [64, 3]]
    - [BottleneckCSP, [64, 128, 3]]

  neck:
    - [ASF-P2, [64, 128, 256, 512, 1024]]  # 使用ASF-P2模块

  head:
    - [Detect, [num_classes, anchors]]

train:
  epochs: 300
  batch_size: 16
  imgsz: 640
  # ... 其他训练参数 ...

13. YOLOv8n with Attention

# yolov8n-attention.yaml

model:
  # ... 其他基础配置 ...

  backbone:
    - [C1, [64, 3]]
    - [AttentionModule, [64, 128]]  # 使用注意力模块

  neck:
    - [FPN, [64, 128, 256, 512, 1024]]

  head:
    - [Detect, [num_classes, anchors]]

train:
  epochs: 300
  batch_size: 16
  imgsz: 640
  # ... 其他训练参数 ...

14. BiFPN for YOLOv8n

# yolov8n-bifpn.yaml

model:
  # ... 其他基础配置 ...

  backbone:
    - [C1, [64, 3]]
    - [BottleneckCSP, [64, 128, 3]]

  neck:
    - [BiFPN, [64, 128, 256, 512, 1024]]  # 使用BiFPN模块

  head:
    - [Detect, [num_classes, anchors]]

train:
  epochs: 300
  batch_size: 16
  imgsz: 640
  # ... 其他训练参数 ...

同学的 注意事项

  • 模块实现:上述配置文件中的模块(如SEAMHead, BiFPN, MobileNetV4, A-Down, AlIFRep, ASF-DySample, ASF-P2, AttentionModule等)需要在对应的Python代码中实现。
  • 超参数调整:根据具体任务和数据集,可能需要对超参数进行调整以获得最佳性能。
  • 兼容性检查:确保所有自定义模块与YOLOv8框架兼容,并正确集成到模型中。

以上文字及代码仅供参考。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值