72.编辑距离

       

编辑距离是指通过删除、插入和替换三种操作,将一个字符串转换为另一个字符串所需的最少操作次数。

首先定义状态:dp[i][j] 表示将 word1 的前 i 个字符转换为 word2 的前 j 个字符所需的最少操作数。接下来定义状态转移方程:

  • 如果 word1[i] == word2[j],则 dp[i][j] = dp[i - 1][j - 1],因为字符相同,无需操作,当前状态等于上一个状态。
  • 如果字符不同,则可以通过以下三种操作:
    1. 删除dp[i - 1][j] + 1,表示删除 word1 的前 i - 1个字符与word2的字符匹配,只有第i个字符不相同,删除它,使word1word2 的前 j 个字符相同。
    2. 插入dp[i][j - 1] + 1,表示在 word1 的前 i 个字符与word2 的前 j - 1个字符相同,此时在word1 末尾插入一个字符,使其与 word2 的前 j 个字符相同。
    3. 替换dp[i - 1][j - 1] + 1,表示将 word1 的当前字符替换为 word2 的当前字符,由于替换后两个字符相同等价于word1[i] == word2[j],则状态与上一个状态相同,只是多了一次操作数。

最终,dp[i][j] 取这三种操作中的最小值。

        代码

class Solution {
public:
    //状态:将word1前 i 个字符变成 word2 前 j 个字符所需要的最少操作数
    int minDistance(string word1, string word2) {
        word1 = " " + word1,word2 = " " + word2;
        int m = word1.size(),n = word2.size();
        vector<vector<int>> dp(m + 1,vector<int>(n + 1));
        for (int i = 0;i < m;i++) dp[i][0] = i;
        for (int j = 0;j < n;j++) dp[0][j] = j;
        
        for (int i = 1;i <= m;i++) {
            for (int j = 1; j <= n;j++) {
                if (word1[i] == word2[j]) {
                    dp[i][j] = dp[i - 1][j - 1];
                }else{
                    dp[i][j] = min(dp[i - 1][j - 1],min(dp[i - 1][j],dp[i][j - 1])) + 1;
                }
            }
        }
        return dp[m][n];
    }
};

        时间复杂度:O(mn),m,n分别为 word1 和 word2 的长度

        空间复杂度:O(mn),用于存储状态值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值