自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(31)
  • 收藏
  • 关注

原创 构建服务端口运行你的ai算法

不管背后是 FastText、RandomForest、BERT 还是 PyTorch 的 CNN,只要 5 个文件、3 条命令,就能把任意模型包成 HTTP 服务,对外统一。后面再解释每一步在干什么,方便二次扩展。四、换成 RandomForest(只改 3 处)六、横向扩展 checklist(以后用得到再看)启动,接口地址、字段、调用方式完全一样。五、Docker 一键部署(可选),模型文件名带版本号,实现热更新。里两行代码,其余永不改。三、本地启动(3 条命令),接 Grafana。

2025-09-06 01:43:34 208

原创 2025计算机视觉新技术

• 入口:https://github.com/facebookresearch/segment-anything-2。• 入口:https://github.com/DepthAnything/Depth-Anything-V2。• 入口:https://github.com/mlfoundations/open_clip。• 入口:https://github.com/AILab-CVC/YOLO-World。• 入口:https://github.com/StaRainJ/HyperRecon。

2025-09-06 01:18:11 973

原创 FastText 词向量全景指南(没那么全)

• 模型:CBOW + Skip-gram 的扩展,把 字符 n-gram 也作为特征,解决未登录词(OOV)。• 输出:.vec文件:纯文本,每行一个词 + 浮点向量.bin文件:二进制,含模型参数,可继续训练• 维度:常见 100/300,官方中文 300 维• 优势:轻量、跨语言、支持子词。

2025-08-22 23:51:24 740

原创 《新手一文收藏 200+ 免费 NLP 与多模态数据集》

本文力求“拿来即用”:每条数据给出【领域】【规模】【标签】【下载】【许可】【一句话用法】,并附脚本可直接wget。

2025-08-22 21:35:18 894

原创 当我们想用GPU(nlp模型篇)

在个人设备上“把 GPU 真正用起来”做 NLP,分五步:准备 → 安装 → 验证 → 训练/推理 → 踩坑排查。下面每一步都给出可复制命令和常见错误。

2025-08-22 20:37:30 427

原创 MOV 架构:Transformer 的又一位新星后代

2023-2025 年,大模型圈出现了一连串以 Mamba、Outer-product、Vector-state 为共同技术母题的架构,社区习惯把它们统称为 MOV 系列(也有人戏称“Transformer 三代目”)。

2025-08-09 01:22:44 629

原创 FastText 全景手册:原理、安装、实战与前沿

• 功能:词向量训练(Skip-Gram / CBOW)、文本分类、句子向量、OOV 词处理• 语言:C++11 核心 + Python/Java 绑定• 协议:MIT License。

2025-08-09 01:11:10 741

原创 Transformer 架构深度解析:从 Self-Attention 到 LLM 的演化之路

在 2017 年以前的自然语言处理(NLP)领域,序列建模几乎被 RNN 及其变体(LSTM、GRU)统治。Transformer(Vaswani et al., 2017)用“Self-Attention + 全前馈”一次性解决并行性与长程依赖,成为现代大模型(GPT、BERT、T5、LLaMA、PaLM 等)的公共底座。

2025-08-09 00:38:30 530

原创 C语言大虾

这篇文章是一次试探,看看一般的代码学习文章格式(一段学一个语法或者一个知识点,统一都是学习内容下面加上代码,这一部分讲完下一部分同样),与这篇文章泾渭分明的格式对代码语言学习的帮助有什么区别这篇文章分为两个大部分第一部分包含四百个分开的知识点,方便大家碎片化记忆第二部分包含一百五十个例句,就像记单词一样,语境永远是分开的知识点的最好记忆帮手以下是第一部分目录总览。

2025-07-26 04:22:21 716

原创 致力于解决用户入睡问题的ai小项目(1)

1.本次代码部分我打算使用以下七个库。

2025-07-26 04:05:55 168

原创 机器学习算法----极限学习机(Extreme learning machine/ELM)

极限学习机(ELM)是一种单隐层前馈神经网络(SLFN)的训练算法,其基本原理在于:随机初始化输入权重和隐藏层神经元的偏置,并通过最小二乘法计算隐藏层到输出层的权重,从而实现快速学习 . 这种方法避免了传统神经网络训练中耗时的迭代调整过程,显著提高了学习速度极限学习机是黄广斌教授于2004年提出的,是实打实的中国技术。最初它被黄广斌教授发表在***《Neurocomputing》

2025-07-25 03:23:25 677

原创 Matplotlib中seaborn的学习应用(1)

以上只是向大家简单展示了seaborn的基础操作,包括了二十种应用场景,还有哪些场景是更为常用或者更为先进的也欢迎大家指出。

2025-07-24 02:05:22 282

原创 文本张量的表示方法

以下是将各种文本张量表示方法及其代码实现总结到一起的完整内容。每种方法都包括简要介绍、优缺点分析、代码实现和示例输出。

2025-07-12 23:36:23 162

原创 pytorch中的各种基础操作

【代码】pytorch中的各种基础操作。

2025-07-06 15:56:14 107

原创 定义一个由pytorch实现的神经网络并进行简单进阶

在PyTorch中,神经网络通常通过继承类来实现 (Vieth et al., 2024)。是所有神经网络模块的基类,提供了构建神经网络的基本功能,例如参数管理和forward方法 (Vieth et al., 2024)。# 定义网络层self.fc1 = nn.Linear(784, 128) # 全连接层1:输入784,输出128self.fc2 = nn.Linear(128, 10) # 全连接层2:输入128,输出10# 定义前向传播过程。

2025-07-04 23:58:11 934

原创 机器学习⑨大算法

K-Means通过迭代优化,将数据划分为K个簇,使得簇内样本的相似度高,而簇间样本的相似度低。KNN通过计算样本点之间的距离(如欧氏距离),找到与目标样本最接近的K个样本点,然后根据这些近邻点的标签进行投票(分类)或取平均值(回归)。常见的任务包括聚类(如将相似的客户分组)和降维(如减少数据特征维度)。逻辑回归通过逻辑函数(Sigmoid函数)将线性回归的输出映射到(0,1)区间,表示样本属于某个类别的概率。线性回归的目标是找到一条直线(或超平面),使得数据点到这条直线的距离(误差)最小。

2025-06-15 18:49:28 867

原创 深度学习一些基础笔记

均匀分布和正态分布可通过修改参数进行改进改进后的初始化方法能与网络结构更好结合均匀分布可调整起始值和终止值正态分布可调整均值和标准差构建神经网络层使用nn.Linear示例:3输入2输出的全连接层PyTorch默认使用Xavier正态分布初始化权重全零初始化:使用zero_方法,生成2×3全零矩阵全一初始化:使用ones_方法生成全1矩阵固定值初始化:通过constant方法指定数值(如100)正态分布初始化:采用normal方法,默认均值为0、方差为1。

2025-06-15 11:53:48 1221

原创 深度学习笔记

arrange函数特性:参数:起始值(start)、终止值(end)、步长(step)输出:生成区间为的等差数列,不包含终止值示例:torch.arange(0,10,2) →linspace函数特性:参数:起始值(start)、终止值(end)、元素个数(steps)输出:生成区间为的等差数列,包含终止值示例:torch.linspace(0,9,10) →。

2025-06-06 11:50:15 736

原创 pytorch基础-张量数据

一、张量数值计算总结。

2025-05-31 14:10:27 130

原创 三阶段day04-day10笔记

anaconda主要用于科学计算,继承了一个conda虚拟环境管理器,由于Python的弱向下兼容性,在很多时候版本更新会删除很多功能和代码,写着写着出现来自未来的警告#future warning#因而需要虚拟环境的存在兜底。是两种用于数据选择的主要方法,它们提供了不同的方式来访问和操作 DataFrame 或 Series 中的数据。RFM模型是一种用于客户价值分析的模型,主要用于衡量客户的价值和忠诚度。• 资源分配优化:企业可以根据客户的RFM价值,合理分配营销资源,将更多的资源投入到高价值客户上。

2025-05-04 16:23:21 814

原创 阶段三day03笔记

• 约束:主键、自动增长、非空和外键约束用于确保数据的完整性和唯一性。)用于为新插入的记录自动生成唯一值,通常与主键结合使用。外键约束用于建立两个表之间的关联关系,确保数据的完整性。返回左表的所有记录,即使右表中没有匹配的记录。返回右表的所有记录,即使左表中没有匹配的记录。• 适用于主键列,确保每个记录的主键值唯一。• 外键列的值必须在被引用表的主键列中存在。• 如果右表中没有匹配的记录,则返回。• 如果左表中没有匹配的记录,则返回。查询表中的所有列和所有记录。返回两个表中匹配的记录。

2025-04-30 23:52:56 327

原创 三阶段day02笔记

特点只是一个指向,不是物理移动可以链接文件和文件夹常用于为长路径创建简短别名方便管理多个版本的软件实际应用Python多版本管理配置文件快捷访问系统命令别名。

2025-04-29 19:46:10 659

原创 三阶段day01笔记

定义:由电子、机械和光电元件组成的各种物理装置总称关键组件:包括显卡(AI开发重要)、主板、CPU、内存、硬盘等市场现状:高端显卡如RTX 4090约1万元,专业级如H100达10万元起组成结构:计算机=硬件+软件的双重架构操作系统本质:特殊的系统级软件核心价值硬件资源调度中枢用户与硬件的交互桥梁典型系统PC端:Windows/Linux/macOS三足鼎立移动端:Android/iOS/HarmonyOS三大阵营。

2025-04-29 13:40:12 921

原创 Python笔记4.25

(一)os模块• 获取当前工作目录。

2025-04-25 22:42:17 500

原创 Python笔记4.24

进程池是一种用于管理多个进程的机制,它可以在程序运行时动态地创建和回收进程,从而提高程序的执行效率。• 线程:由于线程共享进程的资源,多个线程可能会同时竞争同一资源,导致资源竞争问题。• 多线程:虽然可以同时处理多个文件,但可能会遇到线程安全问题,且受GIL限制,无法充分利用多核CPU的优势。• 线程:线程之间可以通过共享变量、锁、条件变量等机制进行通信,通信效率较高,但需要小心处理线程安全问题。• 条件变量(Condition):用于线程间的同步,一个线程等待某个条件满足,另一个线程通知条件满足。

2025-04-25 01:04:24 742

原创 # Python笔记4.23

输出:Hello-World#输出:Hello World")# 输出:Hello, Alice!• \d :匹配任意数字,等同于 [0-9]• \w :匹配任意字母数字字符,等同于 [a-zA-Z0-9_]• \s :匹配任意空白字符,包括空格、制表符、换行符等。

2025-04-23 23:26:43 217

原创 Python中,打开文件的形式表格

2025-04-23 23:17:37 83

原创 # AI:对NLP领域的了解与时事热点的解读 ##

自然语言处理(Natural Language Processing,简称NLP)是计算机科学、人工智能和语言学的一个交叉领域,旨在使计算机能够理解、生成和处理人类的自然语言。自然语言是人类日常交流所使用的语言,如中文、英文、法文等,与计算机编程语言不同,它具有高度的复杂性、模糊性和多样性。NLP的目标是让计算机能够像人类一样理解和生成自然语言,从而实现人机之间更自然、更高效的交互。这涉及到多个层面的任务,包括语音识别、文本分析、语义理解、机器翻译、情感分析等。

2025-04-13 22:44:34 628

原创 transformer的理解(2)

由于第一部分有一些瑕疵,下文内容将在一些改动后的第一部分的内容开始---------------------------------(图片和学习内容来源见transformer的理解(1))1.神经网络的一层运算计算式:sigmoid(xt\行列式x的转置\M+b)神经网络一般分为三层,输入层,输出层,隐藏层,前两个都很好理解,隐藏层则是为了让模型更复杂,从而方便输入层向输出层转化,一般来说隐藏层不会只有一层,并且是一种升维操作#{所以神经网络是非线性运算}2.更为典型的神经网络基础模型。

2025-04-11 15:01:46 809

原创 Windows cursor 安装 mcp 实现各种AI操作(1)

在正式进行学习前,检查一下cursor底部有没有弹出正在安装的选项,有的话先让他安装,本人cursor需要的配置有nodeladb和git终端,这两样都需要之后的操作中能够加载到cursor软件当中去,所以尤其是git在安装的时候一定要勾选path,否则之后又要一直麻烦右边的ai,会显得安装软件的人像个弱智。有的有的,俗话说得好,工具是死的,人也不一定,为了防止在较长的对话中模糊了ai和我们自己的大脑,up主这时教了我们一句话------------

2025-04-11 12:57:40 581

原创 transformer的理解(1)

这类模型极为常见,其中输入层的数据有很大部分并不起作用,并且隐藏层在上一层的基础上进行了抽象化操作,隐藏层越深,抽象程度越高,因此这种模型的隐藏层反而是降维的,即隐藏层的元素少于输入层,并且一层少于一层#(512\输入层—128—64—32—4\输出层\。神经网络一般分为三层,输入层,输出层,隐藏层,前两个都很好理解,隐藏层则是为了让模型更复杂,从而方便输入层向输出层转化,一般来说隐藏层不会只有一层,并且是一种升维操作#{所以神经网络是非线性运算}原来空间中两个不同的点,在新空间中还是两个不同的点。

2025-04-10 22:42:57 669 1

基于python的多种函数递归与斐波那契数列文件

基于python的多种函数递归与斐波那契数列文件

2025-04-11

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除