牛顿迭代法求方程的根

求f(x)=2*x*x*x-4*x*x+3*x-6=0 ,在1.5附近的根

思想:利用一阶Taylor 即切线方程的根来不断迭代,逼近方程的根。

迭代公式 xn+1=xn - f(xn)/f'(xn) 

//2*x*x*x-4*x*x+3*x-6=0 在x=1.5附近的根  精度1e-8
#include<stdio.h>
#include<math.h>
double fun(double x){
	return 2*pow(x,3)-4*pow(x,2)+3*x-6;//函数值
}
double fun1(double x){
	return 6*pow(x,2)+8*x+3;//切线值
}
double Newton(){
	double x1=1.5,x2=x1-fun(x1)/fun1(x1);
	while(fabs(x2-x1)>1e-8){
		x1=x2;
		x2=x1-fun(x1)/fun1(x1);//迭代公式
	}
	return x2;
}
int main(){
	printf("%f",Newton());
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值