为什么协同过滤算法是推荐系统的基石?
在Netflix、亚马逊、抖音等平台背后,协同过滤(Collaborative Filtering)算法支撑着千亿级的商业决策。它通过分析用户行为数据,发现隐藏的群体偏好模式,但传统实现存在以下痛点:
- 冷启动问题:新用户/物品无法获得有效推荐
- 数据稀疏性:用户-物品评分矩阵中99%以上为缺失值
- 计算复杂度:百万级用户时相似度计算可达O(n²)级别
- 实时性挑战:传统批处理无法支持实时推荐
本文将通过代码深度解析+工程优化方案,展示如何用Java实现:
- 基于用户的协同过滤(UserCF)
- 基于物品的协同过滤(ItemCF)
- 矩阵分解(Matrix Factorization)
- 深度学习增强协同过滤
- 分布式优化方案