usingMathNet.Numerics.Distributions;usingSystem;classMonteCarloOptionPricing{staticvoidMain(){// 参数设置double S0 =100.0;// 初始股价double K =105.0;// 行权价double r =0.05;// 无风险利率double sigma =0.2;// 波动率double T =1.0;// 到期时间(年)int N =1000000;// 路径数// 正态分布随机数生成器var normal =newNormal(0,1);double payoffSum =0;for(int i =0; i < N; i++){// 生成随机路径double Z = normal.Sample();double ST = S0 * Math.Exp((r -0.5* sigma * sigma)* T + sigma * Math.Sqrt(T)* Z);// 计算Payoffdouble payoff = Math.Max(ST - K,0);
payoffSum += payoff;}// 计算期望并贴现double optionPrice = Math.Exp(-r * T)* payoffSum / N;
Console.WriteLine($"期权价格:{optionPrice:F4}");}}
4.2 并行化优化
// 使用Parallel.For加速
Parallel.For(0, N, i =>{double Z = normal.Sample();double ST = S0 * Math.Exp((r -0.5* sigma * sigma)* T + sigma * Math.Sqrt(T)* Z);double payoff = Math.Max(ST - K,0);
Interlocked.Add(ref payoffSum, payoff);// 线程安全累加});
五、深度优化技巧与性能调优
5.1 使用Span减少内存分配
// 传统方式:double[] data =newdouble[1000000];for(int i =0; i < data.Length; i++) data[i]= Math.Sin(i);// 优化后:Span<double> dataSpan =stackallocdouble[1000000];// 堆栈分配for(int i =0; i < dataSpan.Length; i++)
dataSpan[i]= Math.Sin(i);
5.2 SIMD指令加速
usingSystem.Runtime.Intrinsics;usingSystem.Runtime.Intrinsics.X86;staticvoidVectorizedDotProduct(double[] a,double[] b,int length){double result =0;Vector256<double> vecResult = Vector256.Zero;for(int i =0; i < length; i += Vector256<double>.Count){Vector256<double> vecA = Avx.LoadVector256(a, i);Vector256<double> vecB = Avx.LoadVector256(b, i);
vecResult = Avx.Add(vecResult, Avx.Multiply(vecA, vecB));}// 汇总结果
result = vecResult.GetElement(0)+ vecResult.GetElement(1);// 处理剩余元素...}
六、复杂场景案例:流体力学模拟
6.1 二维Navier-Stokes方程求解
usingMathNet.Numerics.LinearAlgebra;usingSystem;classFluidSimulation{staticvoidMain(){int N =512;// 网格点数double dt =0.01;// 时间步长double nu =0.1;// 粘性系数// 初始化速度场var u = Matrix<double>.Build.Dense(N, N,0.0);var v = Matrix<double>.Build.Dense(N, N,0.0);// 边界条件for(int i =0; i < N; i++){
u[0, i]=1.0;// 左边界速度
v[i,0]=0.0;// 底部边界}// 时间推进for(int step =0; step <1000; step++){// 离散化方程(此处省略复杂偏微分方程展开)// 使用隐式求解器或多重网格法// ...// 可视化(通过OpenTK或ImageSharp)// ...}}}
6.2 并行化策略
// 使用PLINQ加速离散化
Parallel.For(0, N, i =>{for(int j =0; j < N; j++){// 计算每个网格点的导数// ...}});
七、错误处理与数值稳定性
7.1 避免浮点数精度问题
// 示例:计算平方根时的精度保护doubleComputeSafeSqrt(double x){if(x <0)thrownewArgumentOutOfRangeException(nameof(x),"输入必须非负");return Math.Sqrt(x);}// 使用decimal类型处理金融计算decimal interest =0.05m;decimal principal =100000m;decimal futureValue = principal *(decimal)Math.Pow(1+(double)interest,10);
7.2 异常处理与收敛性验证
// 线性方程组求解异常处理try{var x = A.Solve(b);}catch(SingularMatrixException){
Console.WriteLine("矩阵奇异,无法求解");// 启用正则化或调整参数}