** C#系统监控工具的10大核心技术深度解析**
第一阶段:性能指标采集——从代码到硬件的深度感知
1.1 CPU使用率监控(核心代码)
using System.Diagnostics;
using System.Threading;
public class CpuMonitor
{
private readonly PerformanceCounter _cpuCounter;
private readonly double _threshold = 90.0; // 警戒阈值
public CpuMonitor()
{
// 初始化性能计数器(类别:Processor,计数器:% Processor Time,实例:_Total)
_cpuCounter = new PerformanceCounter("Processor", "% Processor Time", "_Total");
}
public void StartMonitoring()
{
while (true)
{
Thread.Sleep(1000); // 每秒采集一次
var usage = _cpuCounter.NextValue();
if (usage > _threshold)
{
Console.WriteLine($"⚠️ CPU告警:{usage:F2}% 超过阈值!");
// 触发告警(钉钉/邮件)
SendAlert($"CPU Usage: {usage}%");
}
}
}
private void SendAlert(string message)
{
// 实际项目中可集成钉钉机器人或SMTP
Console.WriteLine($"[ALERT] {DateTime.Now}: {message}");
}
}
注释解析:
PerformanceCounter
:.NET内置的性能计数器,支持Windows/Linux(需安装libunwind)。_threshold
:可根据业务调整阈值,如数据库服务器可设为80%。- 跨平台适配:Linux需安装
libunwind
库:sudo apt-get install libunwind8
。
1.2 内存监控与泄漏检测
public class MemoryMonitor
{
public void CheckMemoryLeak()
{
GC.Collect(); // 强制垃圾回收
GC.WaitForPendingFinalizers();
GC.Collect();
var memory = GC.GetTotalMemory(true); // 强制获取内存
Console.WriteLine($"内存使用:{memory / 1024 / 1024:F2} MB");
// 检测内存泄漏(示例:连续3次增长超10%)
static double[] memoryHistory = new double[3];
static int index = 0;
memoryHistory[index % 3] = memory;
index++;
if (index >= 3 &&
memoryHistory[0] < memoryHistory[1] * 1.1 &&
memoryHistory[1] < memoryHistory[2] * 1.1)
{
Console.WriteLine("⚠️ 可能存在内存泄漏!");
}
}
}
注释解析:
GC.GetTotalMemory(true)
:强制获取托管内存总量(非托管内存需用Win32 API)。- 内存泄漏检测逻辑:通过三次采样判断是否持续增长,阈值可自定义。
1.3 磁盘IO与网络监控
// 磁盘IO监控
public class DiskMonitor
{
public void MonitorDiskUsage(string driveLetter)
{
var drive = new DriveInfo(driveLetter);
var freeSpace = drive.TotalFreeSpace / (1024 * 1024); // MB
Console.WriteLine($"磁盘{drive.Name}剩余空间:{freeSpace:F2} MB");
if (freeSpace < 100) // 低于100MB告警
{
SendAlert($"磁盘{drive.Name}剩余空间不足!");
}
}
}
// 网络监控(需管理员权限)
public class NetworkMonitor
{
public void MonitorNetworkUsage()
{
var network = new PerformanceCounter("Network Interface", "Bytes Total/sec", "以太网");
while (true)
{
var usage = network.NextValue();
Console.WriteLine($"网络流量:{usage / 1024:F2} KB/s");
Thread.Sleep(1000);
}
}
}
第二阶段:实时可视化与告警系统
2.1 Grafana+Prometheus集成(ASP.NET Core中间件)
// Startup.cs配置Prometheus端点
public class Startup
{
public void ConfigureServices(IServiceCollection services)
{
services.AddControllers();
services.AddMetrics(); // Prometheus Metrics服务
services.AddMetricServer(); // 启动默认的/metrics端点
}
public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
app.UseRouting();
app.UseEndpoints(endpoints =>
{
endpoints.MapControllers();
endpoints.MapMetrics(); // 注册/metrics路由
});
}
}
// 自定义Metrics采集(如数据库查询耗时)
public class DbMetrics
{
private readonly Histogram _queryDuration;
public DbMetrics()
{
_queryDuration = Metrics.CreateHistogram("db_query_duration_seconds",
"Database query duration in seconds",
new HistogramConfiguration { Buckets = Histogram.Buckets.Exponential(0.005, 2, 8) });
}
public void RecordQueryTime(double seconds)
{
_queryDuration.Observe(seconds);
}
}
注释解析:
- Prometheus端点:
/metrics
返回文本格式的指标数据,供Prometheus拉取。 - Histogram:记录查询耗时分布,支持自定义分桶策略(如0.005秒到8秒)。
2.2 告警系统实现(钉钉集成)
public class DingTalkAlertSender
{
private readonly string _webhookUrl;
public DingTalkAlertSender(string webhookUrl)
{
_webhookUrl = webhookUrl;
}
public async Task SendAlertAsync(string message)
{
var payload = new
{
msgtype = "text",
text = new { content = message },
at = new { isAtAll = true } // @全体成员
};
using var client = new HttpClient();
await client.PostAsJsonAsync(_webhookUrl, payload);
}
}
// 在监控服务中调用
var sender = new DingTalkAlertSender("https://oapi.dingtalk.com/robot/send?access_token=xxx");
await sender.SendAlertAsync("⚠️ CPU使用率超过90%!");
第三阶段:深度性能分析与优化
3.1 使用dotTrace分析方法调用链
// 代码示例:被分析的方法
[Time("数据库查询耗时")] // 使用MethodTimer.Fody标记
public async Task<List<User>> GetUsersAsync()
{
await Task.Delay(1000); // 模拟延迟
return await _context.Users.ToListAsync();
}
// 配置MethodTimer.Fody
// 在项目中安装MethodTimer.Fody NuGet包
// 在FodyWeavers.xml中添加:
// <MethodTimer />
// 输出日志:
// 方法:GetUsersAsync耗时:00:00:01.002,信息:数据库查询耗时
3.2 BenchmarkDotNet基准测试
using BenchmarkDotNet.Attributes;
using BenchmarkDotNet.Running;
[SimpleJob(RuntimeMoniker.Net60)]
public class StringConcatBenchmark
{
[Params(100, 1000, 10000)]
public int Iterations;
[Benchmark]
public string StringConcat()
{
var result = string.Empty;
for (int i = 0; i < Iterations; i++)
{
result += i.ToString(); // 低效:每次创建新字符串
}
return result;
}
[Benchmark]
public string Stringbuilder()
{
var sb = new StringBuilder();
for (int i = 0; i < Iterations; i++)
{
sb.Append(i); // 高效:内部扩容机制
}
return sb.ToString();
}
}
// 运行测试
BenchmarkRunner.Run<StringConcatBenchmark>();
注释解析:
- 测试结果对比:当
Iterations=10000
时,StringBuilder
比StringConcat
快100倍以上!
第四阶段:企业级应用实战——数据库缓存优化
4.1 Redis缓存与分页优化
public class ProductRepository
{
private readonly IDatabase _redis;
private readonly MyDbContext _context;
public ProductRepository(IConnectionMultiplexer redis, MyDbContext context)
{
_redis = redis.GetDatabase();
_context = context;
}
public async Task<List<Product>> GetProductsAsync(int page = 1, int pageSize = 10)
{
var cacheKey = $"products:{page}:{pageSize}";
var cachedData = await _redis.StringGetAsync(cacheKey);
if (!string.IsNullOrEmpty(cachedData))
{
return JsonConvert.DeserializeObject<List<Product>>(cachedData);
}
// 分页查询(使用索引优化)
var products = await _context.Products
.OrderBy(p => p.Id)
.Skip((page - 1) * pageSize)
.Take(pageSize)
.ToListAsync();
// 写入Redis缓存(TTL 10分钟)
await _redis.StringSetAsync(cacheKey, JsonConvert.SerializeObject(products), TimeSpan.FromMinutes(10));
return products;
}
}
第五阶段:故障排查与国产化适配
5.1 远程调试与日志分析
// 使用Visual Studio远程调试
// 步骤:
// 1. 在目标机器安装VS Remote Debugger(需与VS版本匹配)
// 2. 在VS中选择“调试”→“附加到进程”→输入目标IP和端口
// 3. 设置断点,分析变量值
// 异常日志记录(Serilog+File)
public class Program
{
public static void Main(string[] args)
{
Log.Logger = new LoggerConfiguration()
.WriteTo.File("logs\\app-.log", rollingInterval: RollingInterval.Day)
.CreateLogger();
try
{
// 主逻辑
}
catch (Exception ex)
{
Log.Fatal(ex, "Application terminated unexpectedly");
throw;
}
finally
{
Log.CloseAndFlush();
}
}
}
5.2 银河麒麟系统部署
# 安装依赖库
sudo apt install -y libgdiplus libssl1.1 libunwind8
# 配置环境变量
export DOTNET_SYSTEM_GLOBALIZATION_INVARIANT=1
export DOTNET_KestrelTransport=Libuv
# 启动监控服务
dotnet run --server.urls http://0.0.0.0:5000