MobileViT/MobileFormer:轻量级视觉Transformer的设计哲学 🚀
📑 文章导览
在这篇文章中,我们将深入探讨轻量级视觉Transformer的设计哲学,特别聚焦于MobileViT和MobileFormer这两个代表性模型。本文将帮助你理解:
- 为什么轻量级视觉Transformer成为当前研究热点
- MobileViT和MobileFormer的核心设计原理
- 这些模型如何解决移动端部署的关键挑战
- 实际应用中的优化策略与最佳实践
- 未来发展趋势与研究方向
🔍 轻量级视觉Transformer:解决移动端AI的关键拼图
当今世界,智能手机已成为人工智能应用的主战场。然而,将强大的视觉AI能力部署到资源受限的移动设备上,一直是一个巨大挑战。传统CNN虽然在移动端有MobileNet等优秀架构,但在建模长距离依赖关系方面存在先天不足。而Transformer凭借其强大的全局建模能力席卷了计算机视觉领域,却因其计算复杂度和内存需求而难以在移动设备上高效运行。
这就是MobileViT和MobileFormer出现的关键背景——它们试图回答一个核心问题:如何在资源受限