一直以来,药物与其直接作用的靶点是紧密连接在一起的,通过研究药物与靶点的相互作用,可以深入了解药物的作用机制,这有助于揭示药物如何发挥疗效,以及如何影响特定生物过程;同时了解药物靶点的结构和功能可以为新药的设计提供基础;研究药物和靶点之间的关系有助于优化药物的剂量和给药方式,以实现最佳的治疗效果;了解靶点的功能和与其他生物分子的相互作用,能够帮助预测药物与其他药物之间的潜在相互作用,减少不良反应的风险;通过研究药物靶点,可以更好地理解某些疾病的生物机制,提供新的治疗策略和靶向干预的可能性。
自从计算机模拟分子对接被发明以来,被很多研究用来验证药物与靶点的关系,经过其改造的药物不计其数,通过对药物小分子通过分子对接进行改良提升药效减少毒副作用的案例更是屡见不鲜。但是分子对接作为一个计算机模拟的实验研究,近些年遭到过或多或少的质疑,现在单单的分子对接已经不足以验证药物与靶点的结合情况,因此验证药物与靶点作用的实验性手段更加获得大家的关注。
今天用行学AI带大家来解读一下新兴的药物-靶点研究手段——DARTS(Drug Affinity Responsive Target Stability)。首先让我们问问行学AI,DARTS实验的原理,输入“DARTS实验的原理是什么”
正如行学AI所说,DARTS实验是利用药物与靶点结合后形成的稳定的药物-靶点配合物为原理,与没有被药物处理过的样品相比对,通过比对其表达的差异来验证药物与蛋白的结合。
接下来,我们继续询问行学AI,“详细说明一下DARTS实验的实验步骤”
我们可以看到行学AI的回答,大致分为:1. 样品准备2. 药物处理3. 蛋白酶消化4. 终止5. 蛋白质分析6. 数据分析六个大步骤,但是光看这些步骤相信大家还会有一些疑问,比如样品的蛋白浓度是多少;除了用WB还有哪些检测方式等,我们可以一一问问行学AI。
首先,针对步骤1中未提及的样品蛋白质浓度,我们在行学AI中输入“当在做DARTS实验样品准备时,需要蛋白质浓度大概是多少,为什么”,我们根据行学AI给出的答案可以看到,在我们做DARTS实验时是应该选用蛋白质浓度较高的样品来进行的,高浓度蛋白有助于提高靶点灵敏度、提升蛋白质稳定性等多种优势。
当我们在做DARTS实验时,有很多时候是不知道该选择什么样的酶来完成蛋白裂解工作的(步骤3),这时我们也不妨问问行学AI看看他会给出什么样的意见。我们可以看到行学AI建议我们选用胰蛋白酶(Trypsin)、胰岛素酶(Chymotrypsin)、甲酰胰蛋白酶(Lys-C)或其他特异性酶,且胰蛋白酶的推荐的用量范围通常设定为 1:50 到 1:100 的酶与蛋白质的质量比。
那我们应该怎么解读DARTS实验的图呢?我们可以看到这是一个丹素钠与CD44结合的DARTS实验,展现了不同浓度的丹素钠(Danshensu sodium)和不同浓度的 Pronase(链霉蛋白酶)处理后,CD44 和 GAPDH 蛋白的表达情况。
我们向AI提问“这是一张DARTS实验的WB结果图,解释一下这张图的结果”,
我们可以看到在没有丹素钠处理(浓度为 0 μmol・L⁻¹)时,CD44 蛋白在 0% 和 0.3% Pronase 处理下都有表达,但 0.3% Pronase 处理下的表达量较低。随着丹素钠浓度的增加(50 和 500 μmol・L⁻¹),CD44 蛋白的表达量在 0% Pronase 处理下保持相对稳定,但在 0.3% Pronase 处理下显著降低。这表明丹素钠可能对 CD44 蛋白的稳定性有保护作用,尤其是在高浓度时。
DARTS作为一种新型的药物-靶点研究方案,不仅能够通过WB验证药物与某个靶点的结合情况,还能够通过DARTS-MS通过对DARTS的胶进行质谱分析的方法筛选药物的作用靶点,其高准确性与易操作性必然会使其成为主流的药物-靶点研究方案。