用AI实现数据压缩算法

          

import heapq

from collections import OrderedDict

from itertools import islice

import multiprocessing

 

def analyze_frequency(data):

    freq = {}

    for symbol in data:

        freq[symbol] = freq.get(symbol, 0) + 1

    return sorted(freq.items(), key=lambda x: -x[1])

 

def build_huffman_tree(frequency):

    heap = [[wt, [sym, ""]] for sym, wt in frequency]

    heapq.heapify(heap)

    while len(heap) > 1:

        lo = heapq.heappop(heap)

        hi = heapq.heappop(heap)

        for pair in lo[1:]:

            pair[1] = '0' + pair[1]

        for pair in hi[1:]:

            pair[1] = '1' + pair[1]

        heapq.heappush(heap, [lo[0] + hi[0]] + lo[1:] + hi[1:])

    return sorted(heapq.heappop(heap)[1:], key=lambda p: (len(p[-1]), p))

 

def find_patterns(data, k):

    patterns = {}

    n = len(data)

    for i in range(n - k + 1):

        pattern = data[i:i+k]

        patterns[pattern] = patterns.get(pattern, 0) + 1

    

    sorted_patterns = sorted([p for p, cnt in patterns.items() if cnt >= 2])

    return OrderedDict((p, idx) for idx, p in enumerate(sorted_patterns))

 

def parallel_compress(data, k):

    frequency = analyze_frequency(data)

    huffman_codes = build_huffman_tree(frequency)

    encoding_table = {sym: code for sym, code in huffman_codes}

    frequent_patterns = find_patterns(data, k)

    

    compressed = []

    i = 0

    while i < len(data):

        current_pattern = data[i:i+k]

        if len(current_pattern) == k and current_pattern in frequent_patterns:

            pointer_index = frequent_patterns[current_pattern]

            compressed.append("1" + bin(pointer_index)[2:].zfill(8))

            i += k

        else:

            compressed.append("0" + encoding_table[data[i]])

            i += 1

    return ''.join(compressed), encoding_table, frequent_patterns

 

def parallel_decompress(compressed_data, encoding_table, frequent_patterns):

    reverse_encoding = {v: k for k, v in encoding_table.items()}

    pattern_list = list(frequent_patterns.keys())

    

    decompressed = []

    i = 0

    while i < len(compressed_data):

        if compressed_data[i] == '1':

            pointer_index = int(compressed_data[i+1:i+9], 2)

            decompressed.append(pattern_list[pointer_index])

            i += 9

        else:

            code_builder = []

            j = i + 1

            while j <= len(compressed_data):

                current_code = ''.join(code_builder)

                if current_code in reverse_encoding:

                    decompressed.append(reverse_encoding[current_code])

                    i = j - 1

                    break

                if j < len(compressed_data):

                    code_builder.append(compressed_data[j])

                j += 1

            else:

                raise ValueError("Invalid Huffman code in compressed data")

        i += 1

    

    return ''.join(decompressed)

 

# 测试用例

data = "abracadabra"

compressed_data, encoding_table, frequent_patterns = parallel_compress(data, k=4)

print("Compressed data:", compressed_data)

decompressed_data = parallel_decompress(compressed_data, encoding_table, frequent_patterns)

print("Decompressed data:", decompressed_data)

print("Original matches decompressed:", data == decompressed_data)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值