Amphi ETL
可视化数据转换,设计用于数据准备、报告和ETL。
- github : https://github.com/amphi-ai/amphi-etl
- 📚 官方文档:https://docs.amphi.ai/
- slack : https://join.slack.com/t/amphi-ai/shared_invite/zt-2ci2ptvoy-FENw8AW4ISDXUmz8wcd3bw
- 试用演示 | 报告错误 | 请求功能
📦安装和更新
Amphi 既可以作为独立应用程序,也可以作为 JupyterLab 扩展。
Amphi ETL(独立) | Amphi for JupyterLab(扩展) |
---|---|
![]() | ![]() |
pip install amphi-etl | pip install jupyterlab-amphi |
pip install --upgrade amphi-etl | pip install --upgrade jupyterlab-amphi |
注:如果您希望通过扩展管理器安装Amphi的Jupyterlab扩展,请确保安装jupyerlab-amphi
包
🔨用法
要启动Amphi ETL(独立),只需运行:
amphi start
使用以下参数指定您的:
- 工作区(您可以在其中访问文件并在系统上创建管道),
- 要公开的IP地址
- 使用端口
在本地机器上部署
amphi start -w /your/workspace/path
部署在服务器上
要在服务器上部署,您需要指定-i 0.0.0.0
以公开Amphi并通过Internet访问它。可选指定不同的端口。
amphi start -w /your/workspace/path -i 0.0.0.0 -p 8888
要更新Amphi ETL,请运行以下命令:
pip install --upgrade amphi-etl
✨特点
注:Amphi专注于数据准备、报告和ETL的数据转换。它旨在使数据分析师、科学家和数据工程师能够通过直观的低代码界面轻松开发管道,同时生成可以部署在任何地方的Python代码。
人工智能时代的数据转换解决方案:
AI时代的现代ETL:
- 🧑💻可视化界面/低代码:加速数据管道开发并减少维护时间。
- 🐍Python-code生成:利用可以在任何地方运行的常见库(如熊猫、DuckDB)生成本机Python代码。
- 🔒 隐私和安全:在您的笔记本电脑或云中自行托管Amphi,以确保您的数据完全隐私和安全。
正在进行的功能
- 定制组件-添加开发自己的组件和包装配置的组件的能力
- 实现连接 -
添加安全创建连接以在组件中重用的能力 - 开发者文档-编写全面的文档以允许扩展
- 保存组件 -
保存组件并在其他管道中重用它们
🤝贡献
- 使用和创新:试用Amphi并与我们分享您的用例。您的实际使用和反馈有助于我们改进我们的产品。
- 说出你的见解:遇到故障?有疑问?通过提交问题分享它们,帮助我们增强用户体验。
- 塑造未来:有代码增强或功能想法吗?我们邀请您提出拉取请求并直接贡献。
每一个贡献,无论大小,都值得庆祝。加入我们的使命,完善和提升ETL的数据和人工智能世界。😃
🛣️生态系统
Amphi可作为Jupyterlab的扩展使用,Amphi ETL基于Jupyterlab。因此Jupyterlab扩展可以安装在Amphi ETL上。
- Jupyterlab-JupyterLab计算环境。
- jupyterlab-git-JupyterLab的Git扩展。