- 博客(4)
- 收藏
- 关注
原创 大学生竞赛 | 2024亚太赛 D题 数学建模 详细解析
基于优化目标(如最小化误差或资源消耗)和问题约束条件,构建目标函数并将其转化为 QUBO 矩阵形式:Q(x)=xTQx+cQ(x) = x^T Q x + cQ(x)=xTQx+c其中 QQQ 是对称矩阵,表示优化问题的代价函数,xxx 是二进制变量向量,ccc 为常数项。本题核心在于解决复杂优化问题,如时间序列预测或支持向量机(SVM)分类任务,目的是利用量子计算的优势优化传统算法的性能和求解效率。需要对支持向量机或其他分类器的优化问题(如最小化分类误差)进行数学建模,转化为二进制变量优化问题。
2024-11-23 16:19:42
532
1
原创 大学生竞赛 | 2024亚太赛 C题 数学建模 详细解析
C题具有较高的开放性和适中的难度,适合各专业的学生参与。研究应从多个维度(如宠物类型、市场需求等)对行业数据进行全面分析,同时结合全球产业特点与中国市场现状,制定切实可行的商业发展策略。会等国内外高校的硕博学生和导师团队制作的低门槛AI教育资源,可以更容易地学习针对与兴趣、科研、实战企业应用层面的AI技术。使用散点图、箱线图、热力图等方法分析变量间的关系,例如市场需求与宠物类型、时间趋势与销售额的相关性。结合多维度数据(如宠物类型、市场规模等),构建多变量预测模型,更全面地预测行业趋势。
2024-11-23 15:53:44
2413
1
原创 大学生竞赛 | 2024亚太赛 A题 数学建模 赛题详细解析
本题要求对图像降解问题进行分类,构建物理模型,设计针对性图像增强算法,并结合多种图像质量评价指标进行效果验证,核心挑战在于复杂水下环境对光学特性的影响,以及传统方法与深度学习的结合。对输入图像进行多维度的统计分析,包括但不限于直方图分析、边缘检测、色彩分布和纹理特征提取,以识别图像中的降解类型(如色偏、低光和模糊)。深度学习方法:采用基于生成对抗网络(GAN)的方法(如CycleGAN),或卷积神经网络(CNN)设计高效、自动化的增强模型,特别适合处理复杂降解问题(如模糊和多种降解的组合)。
2024-11-23 15:41:39
2146
1
原创 2024亚太赛 数学建模 B题解析
三合一产品减少了多个设备的功耗和连接线路,降低了布线的复杂性,使室内环境更加简洁美观,同时减少了因线路过多可能引发的安全隐患。本题要求你作为 APMCM 三合一空调外观优化团队的负责人,请收集并研究市场上空调、加湿器和空气净化器的相关数据,建立一个优化三合一空调外观的数学模型。将能效(最小化能耗)、舒适性(空气分布均匀性)、以及安全性(系统稳定性与可靠性)等多维性能要求整合为多目标优化问题,采用先进的优化算法寻求各目标的最佳平衡点。基于优化结果,输出具体设计方案,包括设备的尺寸、外形参数及结构特性。
2024-11-22 22:39:09
1082
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人