自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(96)
  • 收藏
  • 关注

原创 股票A股level2逐笔委托逐笔成交高频数据分享下载

股票A股level2逐笔委托逐笔成交高频数据分享下载

2025-02-10 00:02:05 2529 1

原创 港股历史逐笔成交及分时十档订单簿数据操作指南

参数设置需根据具体品种特征调整,保持方法论的灵活性与可扩展性。本文将以港股市场数据为例,详细阐述分钟数据、高频Tick、日级别数据、逐笔数据、十档订单簿及历史行情数据的处理与分析方法。df_daily = pd.read_csv('日线数据.csv', index_col='date')df_minute = pd.read_csv('港股分钟数据.csv',df_tick = pd.read_csv('港股Tick数据.csv',df_trade = pd.read_csv('逐笔成交.csv',

2025-08-29 08:27:05 792

原创 ETF历史逐笔交易分时高频数据全面解析

实际应用中需根据研究目标选择分析方法:高频策略侧重微观结构建模,量化因子研究依赖特征工程的迭代优化,而套利策略则需多品种数据的协整分析。通过规范化的数据处理流程与科学的分析框架,能有效提升本地数据的研究价值。在金融市场分析中,本地CSV数据的高效管理与深度挖掘对研究ETF(交易所交易基金)的交易行为和市场动态具有重要意义。- 异常值过滤:建立波动阈值规则,针对分钟级数据中单根K线的涨跌幅超过5%或成交量突增10倍的数据执行人工复核。- 滑点建模:根据订单簿的盘口量测算不同成交量下的冲击成本。

2025-08-28 08:41:31 469

原创 期貨Level-2五檔訂單簿每0.25秒更新頻率的分時及日級歷史行情數據解析說明

针对分钟级数据,需统一时间戳格式(如YYYY-MM-DD HH:MM:SS),并校验开盘价、最高价、最低价、收盘价及成交量字段的完整性。高频Tick数据要求更高精度,需包含微秒级时间戳、买卖一档或五档报价及对应挂单量。本文将从数据预处理、分析框架搭建及实际应用场景出发,系统阐述如何高效利用本地CSV数据开展期货量化研究。对于主力合约与连续月份合约数据,需建立合约切换规则表,包含切换日期、新旧合约代码及展期价差。2. 策略回测:基于时间序列对齐原则,按分钟粒度模拟成交,需考虑滑点与手续费影响。

2025-08-27 08:06:27 389

原创 可转换债券高频交易Level-2五档Tick级分钟历史数据分析

对于五档订单簿数据,需检查买一至买五、卖一至卖五报价的逻辑关系,确保档位价格严格遵循买卖价差规则。对于高频Tick数据和逐笔数据,应验证时间序列的连续性和完整性,处理可能的跳空异常值。建议建立分钟级数据与逐笔数据的映射关系,通过精确时间戳匹配,将高频交易明细关联到对应的分钟K线上。本文将以专业视角阐述如何对本地存储的可转债分钟数据、高频Tick数据、日级别数据、逐笔交易数据、五档订单簿数据及历史行情数据进行处理与分析。五档订单簿数据因字段较多,需优化数据存储结构,可考虑将价格字段与数量字段分离存储。

2025-08-23 17:45:16 535

原创 期货Level2五档订单簿0.25秒级高频分时及日频历史行情数据使用指南

本文将系统阐述如何利用本地CSV存储的多种期货数据类型(包括分钟数据、高频Tick、五档Level2等)进行高效处理与策略研究,适用于商品期货、股指期货及国债期货等多种场景。通过上述方法,可充分利用本地CSV期货数据开展量化研究与策略开发,兼顾处理效率与结果准确性。将历史主力合约数据拼接为连续序列,回测长周期策略时需考虑合约换月导致的跳空缺口,建议采用复权价格或实际结算价调整。例如,将Tick数据聚合为分钟级时,需定义聚合规则(如OHLC计算)。对于时间序列查询,建议将数据按时间排序后存储,提升检索效率。

2025-08-22 18:26:20 773

原创 ETF历史逐笔交易分钟级高频数据获取教程

分钟数据的时间戳字段应按ISO8601标准对齐,高频数据需保证时间序列连续性。字段清洗应包含异常值过滤与缺失值处理,对于tick数据中突变的成交价格,可建立滑动窗口标准差过滤机制。通过系统化的数据处理流程,可有效挖掘ETF数据的潜在价值,为量化策略提供可靠的研究基础。本文针对六类常见ETF数据集(分钟数据、高频tick数据、日级别数据、逐笔数据、五档订单簿、历史行情数据)的处理方法与分析逻辑进行系统阐述,为研究人员构建系统化数据处理流程提供参考。构建订单簿快照需注意时点对齐,建议与逐笔数据联合分析。

2025-08-14 17:44:46 1068

原创 股票Level2历史行情数据逐笔成交与十档订单簿分钟级Tick教程

本文将从数据导入、预处理、分析方法与应用场景等角度,详细阐述如何高效利用股票分钟数据、高频Tick数据、逐笔数据、Level2历史数据(包括十档及五档行情)以及其他历史行情数据。逐笔数据包含买卖双方的订单细节,而Level2数据则进一步提供市场深度信息(如十档或五档挂单)。例如,分钟数据需截断至整分钟,Tick数据需按交易所实际时间校准。通过上述方法,用户可系统性挖掘股票市场数据的价值,为量化交易、风险管理和市场微观结构研究提供可靠支持。结合分钟数据与Tick数据,分析成交量与价格变动的相关性。

2025-08-14 15:14:04 1041

原创 股票Level2历史行情数据逐笔成交与十档订单簿分钟级Tick教程

本文将从数据导入、预处理、分析方法与应用场景等角度,详细阐述如何高效利用股票分钟数据、高频Tick数据、逐笔数据、Level2历史数据(包括十档及五档行情)以及其他历史行情数据。逐笔数据包含买卖双方的订单细节,而Level2数据则进一步提供市场深度信息(如十档或五档挂单)。例如,分钟数据需截断至整分钟,Tick数据需按交易所实际时间校准。通过上述方法,用户可系统性挖掘股票市场数据的价值,为量化交易、风险管理和市场微观结构研究提供可靠支持。结合分钟数据与Tick数据,分析成交量与价格变动的相关性。

2025-08-12 10:52:22 634

原创 美股期权历史波动率数据研究分析教程

本地CSV文件通常包含以下核心字段:日期(Date)、标的代码(Underlying)、执行价(Strike)、到期日(Expiry)、期权类型(Call/Put)、开盘价(Open)、收盘价(Close)、成交量(Volume)及隐含波动率(IV)。本文将基于本地CSV格式的存储数据,介绍数据预处理、波动率计算及历史行情分析的完整流程,帮助研究人员构建高效的分析框架。此外,需验证数据的完整性,例如检查执行价与到期日的逻辑关系(如是否存在价外期权的波动率异常),并过滤无效成交记录(如零成交量数据)。

2025-08-11 18:11:41 703

原创 商品、股指、ETF期权五档Tick分时历史行情数据解析

例如,期权分钟数据的时间戳需统一为特定时区格式,高频Tick数据的报价与成交需按时间顺序严格对齐。本文将围绕本地存储的CSV格式期权及历史行情数据,详细阐述其处理流程与应用方法,涵盖分钟数据、高频Tick、日级别数据、逐笔数据、五档订单簿等多个维度。通过对多维度数据的协同分析,可深入挖掘市场规律,为量化投资提供坚实基础。结合五档订单簿的分钟快照数据,可提取买卖价差、委托量不平衡度等指标,用于分析市场流动性变化。尤其对高频策略,应验证其在极端行情(如熔断事件)下的鲁棒性,避免对噪声数据的过度拟合。

2025-08-08 18:52:52 544

原创 美国股市高频tick级分时交易数据解码与订单簿及交易指令分析

通过建立标准化的数据处理流程,结合不同频率数据的特征提取方法,可有效提升分析的严谨性与可靠性。对各类数据中的时间戳字段进行统一格式化处理,分钟级数据建议转换为YYYY-MM-DD HH:MM格式,Tick数据需精确至毫秒级(YYYY-MM-DD HH:MM:SS.fff)。本文将以美股市场为例,系统介绍分钟级数据、高频Tick数据、日级数据、逐笔数据及历史行情的处理方法,涵盖从数据预处理到实战分析的全流程。建议采用滑动时间窗分析,窗口长度设置为300秒,步长60秒,可有效捕捉短期资金流向。

2025-07-29 18:24:59 519

原创 可转债高频Level2五档Tick分钟级历史数据解析

数据本地化处理需建立质量监控闭环,建议定期进行特征有效性检验,通过滚动窗口法评估模型稳定性。原始CSV数据需标准化字段命名规则,建立时间戳、债券代码、价格、成交量、买卖方向的核心字段映射表。对五档订单簿数据,需校验买卖档位价量逻辑关系,处理突增撤单引发的簿记断层。在本地处理可转债数据需建立完善的流程体系,本文从数据预处理、多频段特征构建及量化建模三个维度展开探讨,适用于分钟线、tick级交易明细、订单簿等多维度数据资源。日频数据则需整合换手率、溢价率等基本面特征,建立多因子协整关系。1. 数据格式统一化。

2025-07-29 09:20:47 723

原创 境外期货Level2高频Tick历史行情数据获取与应用指南

建议建立标准字段模板:合约代码、交易日期、开盘价、最高价、最低价、收盘价、成交量、持仓量,分钟级数据需包含精确时间戳。本文以CSV格式的本地数据为核心,以外盘期货分钟数据、CME/COMEX/CBOT历史行情为例,阐述专业化的数据处理与应用方法,为研究者提供可行性方案。以日线数据测试趋势策略时,应设置滑点参数(建议0.1%-0.3%),回测中需包含交割月切换带来的额外成本。注意剔除交割前月的异常波动区间。(3)时区校准:外盘数据需统一转换为目标时区(如UTC+8),避免混用时区导致分析误差。

2025-07-28 18:26:10 717

原创 期货Level2高频五档订单簿历史数据教程:分时/日频0.25秒级行情解析

股指期货Tick数据包含指数点位的精确变动,需注意最小变动单位(tick size)的计算精度。国债期货数据需转换久期、收益率等衍生指标,并考虑应计利息对净价的影响。历史行情数据应包含各合约从上市到退市的完整周期,清洗时需标记无效数据(如交割日前后的异常流动性)。在事件驱动框架中,需确保行情数据的时间戳与订单撮合逻辑精确匹配。为避免未来函数,特征计算必须严格遵循时间序列的因果关系,禁止使用窗口期后的数据进行填充。本文针对不同种类的期货数据,探讨其处理流程与技术要点,以期为量化研究提供参考。

2025-07-28 09:27:08 809

原创 沪深L2逐笔十档委托队列分时Tick历史数据分析处理

通过规范的本地数据管理流程,结合合理的处理技术,研究人员可充分发挥各类股票数据的分析价值。需特别注意不同数据类型的时频特征,建立统一的时间对齐机制,并定期进行数据质量审查,确保分析结果的可靠性。股票市场数据分析是量化交易与金融研究的重要基础,而本地存储的各类股票数据(如CSV格式)为研究人员提供了灵活的处理方式。本文将详细介绍如何利用本地CSV表格数据,结合不同频率和类型的股票数据进行专业分析。高频Level2数据需配合逐笔成交数据验证订单簿变化逻辑,确保数据一致性。建议建立校验机制检测异常跳价情况。

2025-07-27 18:26:29 1163

原创 港股历史逐笔成交数据与每分钟十档买卖盘挂单信息明细解析

本文将从数据预处理、分析框架设计、实际应用案例等角度,系统介绍如何高效利用本地存储的港股分钟数据、高频Tick数据、日级别行情、逐笔成交及十档订单簿等多维度数据。实际应用中需特别注意不同频率数据的时空对齐逻辑,建议先从小样本数据测试开始,逐步验证数据处理管道的稳定性与计算结果的合理性。整合Tick数据与订单簿快照,以1秒为周期计算市场微观特征(如订单流斜率、瞬时买卖价差),构建日内趋势预测模型。(2) 去重校验:针对逐笔成交数据,检查并删除重复记录的交易编号(如存在)。

2025-07-27 09:16:11 1070

原创 ETF历史高频逐笔分钟数据解析

本文将以专业视角阐述如何基于本地存储的多种类型ETF数据进行分析,涵盖分钟级、高频Tick、日级别、逐笔交易、五档订单簿及历史行情数据的使用方法。以15分钟线为例,可通过时间重采样方法生成30分钟、60分钟级别的OHLC数据,用于计算不同周期的MACD、RSI等指标。针对高频Tick数据的时间戳精度(如精确到毫秒或微秒),需确认时间序列的连续性,对缺失时段进行标记处理。对于超过百万行的CSV文件,可依据交易日进行数据分片存储,通过时间范围参数实现按需读取。构建多因子模型时,需注意不同频率数据的滞后性问题。

2025-07-26 19:07:51 1308

原创 港股历史逐笔十档分钟级订单簿行情数据分析

例如,分钟数据的时间戳格式需标准化为“YYYY-MM-DD HH:MM:SS”,Tick数据可能包含毫秒级精度,需验证时间序列的连续性。本文将以本地存储的CSV格式港股数据(包括分钟级、高频Tick、日级、逐笔、十档订单簿及历史行情等类型)为基础,探讨数据解析方法与实际应用场景,帮助从业者高效利用本地数据进行研究分析。结语:本地CSV格式的港股数据是量化研究的基石,通过规范化的清洗流程、多维度的特征工程及严谨的回测框架,可充分挖掘数据价值。港股数据需统一为UTC+8时区,并剔除非交易日记录(如春节休市)。

2025-07-26 16:58:17 1036

原创 ETF历史逐笔交易分时高频数据深度解析

本文以CSV格式的本地数据为例,详细介绍如何对ETF分钟级、高频Tick、日级、逐笔交易、五档订单簿及历史行情数据进行处理与分析。通过合理运用上述方法,可有效挖掘ETF数据中的统计规律性,为量化策略开发提供可靠的基础支持。需注意的是,所有分析应建立在严格的数据验证基础上,避免因数据质量问题导致模型失效。通过逐笔数据重构订单簿时,需维护买卖队列的动态变化,记录每个价格档位的累计挂单量,并考虑撤单事件对深度的影响。基于逐笔数据实现订单撮合模拟时,需精确处理每个事件的时间优先级,特别关注大单冲击对盘口的影响。

2025-07-26 13:36:25 535

原创 历史分钟高频数据

(1)在2024-01-16 11:00:00重要时间点,一笔重大订单进场,包含4209笔子单,集中挂在该分钟的交易区间。(1)在2024-02-29 11:14:00关键交易时刻,一笔大规模订单突然进场,涉及7257笔子单,全部挂在该分钟的交易区间内。在价格波动方面,最高价与最低价之间的差距为0美元,揭示了价格的显著波动。(1)在2024-03-28 13:04:00关键时刻,一笔重要订单突然进场,包含722笔子单,集中挂在该分钟的交易区间。此刻,该分钟的量差急剧上升至0手,显示了市场的剧烈波动。

2025-03-30 16:00:00 1415

原创 CTP高频Tick数据:五档期货Level2解析

(2)据Level-2数据显示,21:00:12.372时段卖盘突现异常,1117手大单封堵卖一价位,125手、65手、99手及68手卖单梯次布局于S2至S5档位,盘面呈现典型压盘特征,建议关注主力资金动向。持仓量的2586467手变化,结合四档挂单的详细分析,揭示了市场在此处有大单的迹象,但买方的力量再次将价格推高。(1)在09:44:01.868时间有一笔大单进场,将1701笔单子挂在买一价,此时买一价和卖一价的量差是1615手,后面买二到买五的挂单量分别是326手,486手,634手,252手。

2025-03-30 15:30:00 1003

原创 探索美股:历史高频分钟回测数据的分享下载

(1)在2024-03-15 16:00:00交易时刻,一笔大型订单进场,涉及3917978笔子单,全部部署在该分钟的交易区间。在价格波动方面,最高价与最低价之间的差距为0美元,揭示了价格的显著波动。(1)在2024-03-15 16:00:00时间有一笔大单进场,将2837113笔单子挂在这个分钟区间,此时当前分钟的量差是0手,最高价和最低价差是0美元,当前分钟的开始价是12.02,最高价是12.02,最低价是12.02,收盘价是12.02,成交量是2837113。

2025-03-30 14:30:00 813

原创 最近逐笔成交

成交在14:14:10:440时间,成交109600股,买家单号是39994265,卖出股民单号的是39785809,这个时间点通过对逐笔委托和逐笔成交的对应,是大单立刻成交,证明是买家市场。成交在13:23:24:210时间,成交59200股,买家单号是12751790,卖出股民单号的是12769015,这个时间点通过对逐笔委托和逐笔成交的对应,是大单立刻成交,证明是买家市场。这个股票关注点在于9:15:00:030时间,该委托单号是266,一次性委托993800股票,一次性大笔投入,必定是大户。

2025-03-30 10:15:03 477 1

原创 最近逐笔成交

成交在14:14:10:440时间,成交109600股,买家单号是39994265,卖出股民单号的是39785809,这个时间点通过对逐笔委托和逐笔成交的对应,是大单立刻成交,证明是买家市场。成交在13:23:24:210时间,成交59200股,买家单号是12751790,卖出股民单号的是12769015,这个时间点通过对逐笔委托和逐笔成交的对应,是大单立刻成交,证明是买家市场。这个股票关注点在于9:15:00:030时间,该委托单号是266,一次性委托993800股票,一次性大笔投入,必定是大户。

2025-03-06 23:15:00 828

原创 美股行情数据:历史高频分钟回测数据策略分析

在价格波动方面,最高价与最低价之间的差距为0美元,揭示了价格的显著波动。(1)在2024-03-15 16:00:00关键交易时刻,一笔重要订单突然进场,包含1115803笔子单,集中挂在该分钟的交易区间。(1)在2024-03-15 16:00:00时间有一笔大单进场,将7256078笔单子挂在这个分钟区间,此时当前分钟的量差是0手,最高价和最低价差是0美元,当前分钟的开始价是83.57,最高价是83.57,最低价是83.57,收盘价是83.57,成交量是7256078。

2025-03-06 22:15:00 856

原创 外盘期货高频分钟历史回测行情数据数据分享下载

(1)在2024-03-13 05:15:00关键交易时刻,一笔重要订单突然进场,包含735笔子单,集中挂在该分钟的交易区间。在价格波动方面,最高价与最低价之间的差距为0美元,揭示了价格的显著波动。(1)在2024-02-01 04:49:00时间有一笔大单进场,将10828笔单子挂在这个分钟区间,此时当前分钟的量差是0手,最高价和最低价差是0美元,当前分钟的开始价是129.88,最高价是129.89,最低价是129.84,收盘价是129.86,成交量是10828。

2025-03-06 21:45:00 1286

原创 期货tick中

(2)在21:53:52.757时间出现了大单卖单,这些卖单大单该合约,挂了3942手在卖一价,后面又分别挂了2109手、1489手、1147手、1490手在S2价、S3价、S4价、S5价。这种差异可能预示着市场情绪的变化或主力资金的动向(2)实时行情显示,21:00:12.372时段卖盘突增,1117手大单封压卖一价位,125手、65手、99手及68手卖单梯次分布于S2至S5档位,盘口呈现典型压盘特征,建议投资者密切关注后续资金流向。持仓量维持在2580237手,四档挂单的分析揭示此处为潜在的转折点。

2025-03-06 17:24:36 1347

原创 cbot历史高频数据:分析历史高频分钟回测数据20250305

在国际期货市场中,历史分钟高频数据的作用不可忽视。这些数据以分钟为单位,详细记录了期货合约的价格变动和交易量信息,为投资者提供了全面的市场视角。通过对这些高频数据的深入分析,投资者可以更准确地判断市场走势,发现潜在的盈利机会,并据此制定出更为精准的交易策略。此外,分钟数据还在量化投资中发挥着关键作用,为投资者构建和回测交易模型提供了有力支持,进一步提升了投资决策的科学性和有效性。因此,国外期货历史分钟高频数据已成为投资者在复杂市场环境中实现稳健投资的重要依托。

2025-03-05 23:30:00 996

原创 一秒四次Tick,期货市场波动20241224

高频Tick五档期货Level2数据,为投资者提供了一个深入理解市场的窗口。本文将阐述这一数据如何通过一秒四次的高频刷新,揭示市场深层次的信息,助力投资者在交易中取得优势。

2025-03-05 22:45:00 838

原创 美股回测:历史高频分钟数据的分享下载与策略解析20250305

在金融分析和投资决策的精细化过程中,美股历史分钟高频数据发挥着至关重要的作用。这些数据以其详尽性和精确性,记录了股票每分钟的价格波动和成交量变化,为投资者提供了深入分析市场动态和价格走势的宝贵资源。通过对这些高频数据的深入挖掘和分析,投资者能够更加准确地判断市场趋势,敏锐捕捉潜在的交易机会,进而制定出更加精准、有效的交易策略。同时,分钟数据在量化投资方面也显示出其独特价值,为投资者构建和回测交易模型提供了有力支持,进一步提升了投资决策的准确性和效率。

2025-03-05 21:15:00 2102

原创 沪深股票level2下载和分析逐笔成交逐笔委托20250224

高频Tick五档期货Level2数据,作为一种先进的金融市场分析工具,以其一秒四次的高频更新,为投资者揭示了市场的微观结构。本文将深入探讨这一数据如何帮助投资者洞察市场动态,优化交易策略,实现投资收益的最大化。

2025-03-05 15:35:01 975

原创 逐笔成交委托高频毫秒级别数据下载分析20250221

此时9:15:16:090发现今日的委托里有一个大撤单648900股,单号是2231,通过分析下单到撤单可以看出,是该股票在进场后,觉得有变化,然后立刻大撤。通过筛选今日的委托,发现这只股票在11:27:01:800撤137600股,买单单号是27856355,属于委托然后就撤单的操作,应该是机器单,非手动下单。通过筛选今日的委托,发现这只股票在9:30:01:590撤158700股,买单单号是1043558,属于委托然后就撤单的操作,应该是机器单,非手动下单。

2025-02-24 14:00:00 443 1

原创 tick毫秒级别的每一笔委托每一笔成交对应关系分析20250221

成交在9:30:00:040时间,成交197200.0股,买家单号是796936.0,卖出股民单号的是792396.0,这个时间点通过对逐笔委托和逐笔成交的对应,是大单立刻成交,证明是买家市场。成交在13:06:58:510时间,成交54500股,买家单号是11204017,卖出股民单号的是11204280,这个时间点通过对逐笔委托和逐笔成交的对应,是大单立刻成交,证明是买家市场。今天至开盘到13:14:18:700,突然出现一个大委托单,委托号是11636008,一次下单100000股入场。

2025-02-24 00:52:32 836

原创 高频Tick数据在期货市场中的信息传播与价格发现机制

未来,随着算法的进步和计算资源的丰富,人工智能将在量化投资中发挥更加重要的作用。因此,在推动高频数据应用的同时,我们也需要不断完善相关法规和伦理框架,确保金融市场的公平性和稳定性。总的来说,Level2五档高频Tick数据的深入研究和应用将继续推动金融市场的创新和发展,为投资者、研究人员和监管机构提供更强大的工具和洞察力。需要注意的是,虽然五档历史Level2行情数据具有很高的研究价值,但在实际应用中,我们还需结合其他市场信息和技术分析方法,以提高研究的准确性和有效性。量化投资可能受到监管政策的影响。

2025-02-20 12:00:00 711

原创 美股高频数据在量化研究中的异常值检测与处理方法

其次是计算资源和算法效率的挑战。本文的结构安排如下:首先介绍高频分钟数据的基本概念和特征,然后详细阐述数据预处理和分析方法,接着探讨高频数据研究的重要发现,最后讨论面临的挑战和未来研究方向。本文的结构安排如下:首先介绍高频分钟数据的基本概念和特征,然后详细阐述数据预处理和分析方法,接着探讨高频数据研究的重要发现,最后讨论面临的挑战和未来研究方向。本文的结构安排如下:首先介绍高频分钟数据的基本概念和特征,然后详细阐述数据预处理和分析方法,接着探讨高频数据研究的重要发现,最后讨论面临的挑战和未来研究方向。

2025-02-20 10:30:00 1122

原创 深入理解股票Level2逐笔成交数据:策略搭建的关键要素

股票量化的核心在于将复杂的市场行为转化为可量化的指标和信号,从而为投资者提供科学、客观的投资依据。股票量化的未来发展趋势包括大数据与量化、人工智能与量化、区块链与量化以及全球化与量化。深度学习模型是基于神经网络构建的模型,如卷积神经网络、循环神经网络等 模型验证是指通过历史数据对模型进行回测,评估模型的性能和稳定性。数据的质量和完整性对量化模型的准确性至关重要,因此数据清洗和预处理是量化投资中的重要环节。数据的质量和完整性对量化模型的准确性至关重要,因此数据清洗和预处理是量化投资中的重要环节。

2025-02-20 08:00:00 1385

原创 分析纽约期货:高频合约历史行情数据的研究方法

与股票市场数据相比,外盘期货数据具有更高的波动性和杠杆效应,这为量化研究带来了独特的挑战和机遇。数据的质量和完整性对量化模型的准确性至关重要,因此数据清洗和预处理是量化投资中的重要环节。数据的质量和完整性对量化模型的准确性至关重要,因此数据清洗和预处理是量化投资中的重要环节。量化投资是一种基于数据和模型的投资方法,具有客观性、系统性和高效性的特点。未来,随着技术的进步和数据的丰富,量化投资将在金融市场中发挥更加重要的作用。此外,随着市场环境的变化和新技术的出现,外盘期货量化研究也需要不断适应新的挑战。

2025-02-19 23:31:05 900

原创 美股分钟级数据在量化研究中的时间序列分析方法

高频分钟数据作为金融市场微观结构研究的重要基础,为分析市场行为、价格发现机制和交易策略优化提供了丰富的信息。文章首先介绍了高频数据的定义、特征及获取途径,随后详细阐述了数据预处理、统计分析和机器学习等方法在美股高频数据分析中的应用。研究发现,高频数据揭示了市场微观结构的复杂性,为交易策略优化提供了新的视角。通过分析高频分钟数据,研究者可以更准确地估计和预测市场风险,如波动率、流动性风险和极端事件风险等。未来,随着数据技术的不断进步,高频数据在量化投资领域的应用将更加广泛,为投资者带来更高的收益。

2025-02-19 13:30:00 389

原创 数据分析利器:COMEX外盘期货主力连续合约与月份合约研究方法

此外,外盘期货数据还可以用于优化交易策略的参数,通过大量的历史数据测试不同参数组合,找到最优的配置方案。近年来,随着计算能力的提升和数据资源的丰富,量化投资在金融市场中的应用越来越广泛。未来,随着数据技术的进步,数据的质量和可获得性将得到改善。与单一市场的数据相比,外盘期货数据能够捕捉到全球市场的波动和联动效应,为量化模型提供更丰富的输入信息。描述性统计分析 通过对纽约期货高频合约历史行情数据的描述性统计分析,我们可以得到数据的基本特征,如均值、方差、最大值、最小值等,为后续的深度分析打下基础。

2025-02-19 11:00:00 1338

获取期货L2五档盘口历史Tick级分时csv文件

国内六大期货交易所历史行情数据CSV标准格式 标的类型金融期货商品期货含主力连续合约及全部月合约 数据精度Level2高频订单簿数据五档买卖盘口逐笔委托采样周期覆盖025秒05秒及1分钟日级颗粒度 时间跨度2005年至今完整行情 存储规范 Level2原生数据2TB按交易所合约分文件夹打包 聚合后分钟级以上数据800GB 网盘加密压缩存储支持分批次下载 核心价值 ① 构建高频策略基于PandasNumPy进行订单簿解析支持LSTMTransformer等时序模型训练 ② 系统化回测体系可验证统计套利做市商价差策略精确计算交易延迟与市场冲击成本 ③ 监管科技应用通过离群点检测挖掘异常交易模式压力测试评估流动性风险 ④ 学术研究支撑提供计量经济学分析市场微观结构研究的实证数据 数据治理经标准化清洗统一合约代码时区校正异常值修复提供完整元数据说明文档满足金融机构投研系统与AI训练的数据合规要求 【版权说明】 数据源:银禾金融数据库,解释权归该数据库所有。

2025-08-14

获取可转债逐笔交易十档五档分时历史数据CSV

可转债历史高频数据集GB2312编码 基础信息 数据格式CSV标准表格兼容Python pandas库read_csv函数高效读取 品种范围中国境内上市可转债全品种 时间跨度2010年至今完整周期 数据粒度 高频序列Level2逐笔委托成交毫秒级精度十档五档订单簿快照 切片数据分笔15153060分钟及日周月K线 存储规格 Level2全量订单簿2TB含买卖档位及盘口变化轨迹 十档五档快照1TB订单簿静态切片 分钟级时序数据50GB含多时间维度聚合指标 应用场景 量化研究支持高频策略回测ARIMALSTM时序预测统计套利模型验证市场冲击成本模拟收益率曲线压力测试 风险工程欺诈模式识别孤立森林算法流动性风险监测订单流异常检测 AI训练提供结构化特征矩阵适配TransformerGNN等深度学习框架训练 学术领域微观结构研究市场有效性检验算法交易类论文实证 数据治理 经三阶清洗校验 1 奇异值过滤基于3σ原则与分位数修剪 2 时序对齐CERF校时协议同步时钟漂移 3 完整性补全蒙特卡洛插值法重构缺失tick 适用对象 量化私募机构金融工程研究团队Fintech开发者及学术课题组需大数据量级投研基础设施支持的主体 注数据实体采用7z分卷压缩存储于云平台提供MD5校验文件与数据字典 【版权说明】 数据源:银禾金融数据库,解释权归该数据库所有。

2025-08-12

ETF历史五档订单簿分钟级日线数据下载

CSV格式沪深ETF基金历史高频数据集2005年至今 基础信息 数据类别Level2行情逐笔委托逐笔成交十档五档订单簿15153060分钟级K线日周月线 储存规格Level2原始数据5TB五档订单簿1TB分钟级数据10GB网盘压缩包存储 编码格式GB2312标准化CSV支持PythonPandas库read_csv高效读取 功能应用 1 高频策略验证ARIMALSTM时序预测统计套利做市商策略市场冲击成本测算 2 风控建模欺诈交易侦测孤立森林算法信用风险关联图谱分析 3 量化研究收益率曲线拟合订单流分析大模型训练TransformerGPT结构适配 4 学术支持市场微观结构研究流动性因子构建学位论文实证数据库 数据特性 经滑点校准与异常值清理涵盖集合竞价连续竞价全时段提供复权价格矩阵适用于私募FOF回测券商金工实证金融工程教学等场景满足量化接口API直连要求 【版权说明】 数据源:银禾金融数据库,解释权归该数据库所有。

2025-08-11

Level-2逐笔成交及十档五档分钟级股票历史数据CSV

沪深证券市场历史高频数据集GB2312编码 数据概览 覆盖品种沪深股票ETF指数可转债 时间跨度2000年至今 数据结构CSV标准化格式支持Pandas快速解析 数据分层 1 行情深度 Level2全档位20T含逐笔委托成交毫秒精度 十档五档行情8T 2 时序粒度 Tick级分笔400G 分钟级合成15153060分钟 周期数据日周月 工程架构 存储方案云端加密压缩包支持分布式下载 数据治理异常值过滤格式统一化时序对齐 应用场景 高频策略研发 订单簿重构统计套利做市策略回测 市场微观结构分析冲击成本建模流动性测算 智能模型训练 联合学习订单流与盘口特征LSTMTransformer 监管科技欺诈模式检测聚类算法关联规则挖掘 学术研究 市场有效性检验波动率建模行为金融学研究 用户画像 金融科技企业算法交易系统开发 资管机构组合优化风险价值计算 科研机构计量经济学实证研究 量化从业人员策略夏普率测试过拟合防范 注数据集通过中国证券业数据安全认证满足证券期货业数据分类分级指引技术要求 【版权说明】 数据源:银禾金融数据库,解释权归该数据库所有。

2025-08-11

Level2逐笔成交十档及五档分时股票历史行情数据csv

CSV格式沪深市场历史高频数据集 数据类型股票ETF指数可转债 时间跨度2000年至今 数据精度 Level2行情20TB含逐笔委托成交毫秒级 十档五档订单簿8TB 多周期K线分笔160分钟日月周 存储方案网盘压缩包总容量28TB 质量管控多重清洗校验支持AI大模型训练 应用场景 1 量化策略开发ARIMALSTM时序预测统计套利策略验证 2 风险管控异常交易检测聚类算法市场冲击成本测算 3 学术研究市场微观结构分析流动性因子构建 4 系统验证算法交易滑点测试收益率曲线压力测试 适配工具PythonpandasNumPy量化平台支持CSV无缝接入 用户群体金融机构量化团队学术机构个人研究员 数据符合GB2312编码规范支持pandas快速解析满足Tick级回测与机器学习需求 【版权说明】 数据源:银禾金融数据库,解释权归该数据库所有。

2025-08-09

获取美股分笔Tick分时日历史数据csv

csv格式美股历史高频数据库GB2312编码 基础信息 数据类型美股ETF指数期货期权含期权链 时间跨度2000年1月2024年5月持续更新 颗粒度 逐笔成交含L2订单簿 存储量8TB 分钟级15153060分钟 800GB 日周月维度 完整OHLCV指标 存储方式百度云加密压缩包可API对接 清洗标准 剔除非交易时段噪音 修复断点异常值 统一时间戳精度 订单簿事件对齐 应用方向 1 高频策略开发基于tick数据验证统计套利做市商算法LSTM价格预测模型 2 微观结构研究分析滑点分布市场冲击成本流动性动态 3 风险工程监测闪崩事件异常交易模式识别关联规则挖掘 4 人工智能训练订单簿时序特征提取适用TransformerGNN 5 学术研究市场有效性检验波动率建模因子挖掘 技术适配 Python生态支持pandas快速读取内存优化 多频域数据对齐 支持TensorFlowPyTorch张量转换 提供标准化数据字典 注机构级数据需签订保密协议学术用途可申请数据子集 【版权说明】 数据源:银禾金融数据库,解释权归该数据库所有。

2025-08-08

获取美股分笔Tick分时日历史数据csv

csv格式美股历史高频数据库GB2312编码 基础信息 数据类型美股ETF指数期货期权含期权链 时间跨度2000年1月2024年5月持续更新 颗粒度 逐笔成交含L2订单簿 存储量8TB 分钟级15153060分钟 800GB 日周月维度 完整OHLCV指标 存储方式百度云加密压缩包可API对接 清洗标准 剔除非交易时段噪音 修复断点异常值 统一时间戳精度 订单簿事件对齐 应用方向 1 高频策略开发基于tick数据验证统计套利做市商算法LSTM价格预测模型 2 微观结构研究分析滑点分布市场冲击成本流动性动态 3 风险工程监测闪崩事件异常交易模式识别关联规则挖掘 4 人工智能训练订单簿时序特征提取适用TransformerGNN 5 学术研究市场有效性检验波动率建模因子挖掘 技术适配 Python生态支持pandas快速读取内存优化 多频域数据对齐 支持TensorFlowPyTorch张量转换 提供标准化数据字典 注机构级数据需签订保密协议学术用途可申请数据子集 【版权说明】 数据源:银禾金融数据库,解释权归该数据库所有。

2025-08-08

获取美股分笔Tick分时日历史数据csv

csv格式美股历史高频数据库GB2312编码 基础信息 数据类型美股ETF指数期货期权含期权链 时间跨度2000年1月2024年5月持续更新 颗粒度 逐笔成交含L2订单簿 存储量8TB 分钟级15153060分钟 800GB 日周月维度 完整OHLCV指标 存储方式百度云加密压缩包可API对接 清洗标准 剔除非交易时段噪音 修复断点异常值 统一时间戳精度 订单簿事件对齐 应用方向 1 高频策略开发基于tick数据验证统计套利做市商算法LSTM价格预测模型 2 微观结构研究分析滑点分布市场冲击成本流动性动态 3 风险工程监测闪崩事件异常交易模式识别关联规则挖掘 4 人工智能训练订单簿时序特征提取适用TransformerGNN 5 学术研究市场有效性检验波动率建模因子挖掘 技术适配 Python生态支持pandas快速读取内存优化 多频域数据对齐 支持TensorFlowPyTorch张量转换 提供标准化数据字典 注机构级数据需签订保密协议学术用途可申请数据子集 【版权说明】 数据源:银禾金融数据库,解释权归该数据库所有。

2025-07-30

获取期权Level2五档Tick分时数据CSV文件

数据集描述 国内外汇期权历史高频数据 数据格式CSV标准化表格兼容ExcelPython等工具解析 品种分类商品期权指数期权ETF期权美股期权全品种覆盖 时间跨度2010年1月至今连续行情 数据频率 Level 2五档订单簿Tick级高频数据8TB 聚合K线15153060分钟及日周月线800GB 存储方式云端加密压缩包含MD5校验文件 核心价值 1 支持高频策略研发基于订单簿数据进行做市商策略模拟统计套利模型验证市场微观结构研究 2 量化建模基础数据适配机器学习LSTMTransformer时序预测ARIMAGARCH风险价值模型VaR训练 3 交易工程化应用支持精准回测滑点模拟交易冲击成本测算组合绩效归因波动率曲面构建 4 学术研究支撑市场有效性检验流动性分析极端行情压力测试等计量研究 质量特征 经多级清洗异常值修正跳价过滤交易时段校准 含完整行情要素买卖价量隐含波动率希腊字母值 时间戳精确至毫秒级CSTEST双时区标注 适用场景量化私募策略迭代金融机构风控建模学术论文实证研究AI训练数据源等垂直领域 【版权说明】 数据源:银禾金融数据库,解释权归该数据库所有。

2025-07-29

获取国内外股指tick级分钟日线历史行情csv

csv格式历史高频金融数据集GB2312编码 数据特性 种类涵盖股票指数行情期货期权美股指数等四大类 时间跨度2000年至今 数据粒度Tick级Level1Level215153060分钟K线日周月 存储规格云端网盘以压缩包形式存储Tick数据100GB其他频率20GB 核心技术应用 1 支持Pandas库快速解析通过read_csv实现毫秒级数据加载兼容JupyterColab等开发环境 2 高频策略验证基于Level1Level2订单簿数据测试统计套利做市商策略测算滑点与冲击成本 3 AI建模训练提供LSTMTransformer等时序模型的训练数据适配TensorFlowPyTorch框架 4 多频段回测系统ARIMAGARCH模型参数优化蒙特卡洛模拟风险压力测试 5 学术研究支持市场微观结构分析波动率曲面构建流动性指标计算 质量控制标准 经过EMA异常值过滤插值法补全时区统一化处理支持24国语言时间戳解析已通过FFILLSAFT补缺算法校验满足QIM314金融数据质量标准 【版权说明】 数据源:银禾金融数据库,解释权归该数据库所有。

2025-07-28

港股历史逐笔数据十档买卖盘分钟日下载

数据格式CSV表格GB2312编码 数据类型港股历史高频数据集 逐笔交易数据2005年至今Level2逐笔成交记录含委托单编号成交量价时戳 订单簿快照十档买卖盘口5秒间隔切片 聚合行情 分钟级15153060分钟OHLCV 日周月K线复权因子整合 存储规范 网盘压缩包存储结构 LEVEL2原始数据1TBtargz格式分卷 加工后数据集100GBzip加密压缩 质量保障 NSAQ清洗标准野值替换时钟同步 订单流重构计算买卖压力指标 跨市场校验港股通数据对齐 应用场景 1 高频策略研发 流动性指标计算VPIN订单不平衡度 盘口特征工程十档动量梯度 事件驱动回测大宗交易冲击建模 2 智能投研 LOBTF深度学习Transformer订单簿训练 交易成本分析TWAPVWAP滑点模拟 3 学术研究 微观结构论文价量关系格兰杰检验 市场质量评估有效价差执行缺口 数据接口 pandasread_csv优化方案类别编码块读取 HDF5转换工具提升IO性能10倍 SQLite关系映射订单簿关系型存储 【版权说明】 数据源:银禾金融数据库,解释权归该数据库所有。

2025-07-29

获取期货L2五档订单簿历史Tick分时csv数据

国内六大期货交易所历史高频数据集GB2312编码 数据格式CSV表格支持Python pandas高效读取兼容read_csv函数 合约类别金融期货商品期货全品种涵盖主力连续合约及所有月份合约 数据精度 Level2深度行情五档订单簿025秒05秒粒度 K线数据15153060分钟及日周月线 时间跨度2005年至今 存储规格 Level2原始数据2TB网盘加密压缩包 聚合数据800GB含切片清洗版本 应用场景 1 高频策略开发基于订单簿流动性分析做市商策略统计套利预测模型构建LSTM时序分析 2 风险量化市场冲击成本模拟异常交易检测聚类算法关联规则 3 大模型训练深度强化学习DRL多因子特征工程 4 学术研究市场微观结构分析波动率异动归因 5 系统验证夏普率优化滑点校准组合回测PythonMTLAB量化框架 数据质量通过多源校验与缺失值补偿处理包含标准化字段 时间戳精确至毫秒 买卖盘口价格挂单量 成交明细逐笔数据 量价指标VWAP资金流 适用量化私募金融机构投研系统接入提供完整数据字典及格式说明文档 【版权说明】 数据源:银禾金融数据库,解释权归该数据库所有。

2025-07-27

获取转债逐笔成交十档五档盘口分钟级历史数据csv

数据集名称中国可转债市场多维高频交易数据库2010至今 文件格式GB2312编码CSV标准表格 数据结构 L2数据集群 逐笔成交含毫秒时间戳 21TB 逐笔委托含毫秒时间戳 18TB 订单簿十档行情 13TB 订单簿五档快照 11TB 切片行情库 分笔交易数据 87GB 15153060分钟K线 53GB 日周月周期数据 49GB 辅助索引 特殊事件标记文件 除权除息校准说明 技术特性 纳秒级时间戳精度保障交易序列完整性 订单簿重构误差02的清洗标准 包含隐含波动率希腊值等衍生指标 内嵌成交委托双向穿透校验机制 核心应用场景 算法验证 支持高频做市策略统计套利模型流动性冲击模拟 智能监管 基于孤立森林算法的异常交易识别订单流毒性检测 深度学习 LSTM波动率预测Transformer订单簿特征提取 学术研究 微观结构理论实证知情交易概率测算 存储规范 百度云加密压缩包存储提供SHA256校验文件企业级用户支持私有化部署数据更新机制包含当日T1增量更新与季度全量校订版本 【版权说明】 数据源:银禾金融数据库,解释权归该数据库所有。

2025-07-27

ETF历史五档订单簿分时及日线数据下载

金融市场数据服务 ETF高频历史数据库 数据属性 数据格式CSV标准化表格GB2312编码 资产类别沪深交易所上市ETF基金全品种历史数据 采样频率 Level2高频逐笔委托成交毫秒级精度 盘口深度十档行情Level2标准五档快照Level1精简 K线聚合15153060分钟线日周月线 时间跨度2005年境内ETF起始年份实时更新 数据规格 存储介质云端加密压缩存储分层打包 存储规模 Level2原生数据5TB 五档行情1TB 聚合数据10GB 数据质量经过EMA智能清洗包含异常值修正时序校准缺失插补 适用场景 核心用户 金融机构券商私募公募 量化研究团队 高等院校经济金融系 学术论文撰写者 应用方向 1 量化策略研发 算法交易回测ARIMALSTM波动率预测 统计套利建模订单簿特征分析 做市策略优化滑点与冲击成本测算 2 金融工程研究 收益率曲线重构 市场微观结构解析 流动性风险建模 3 智能系统训练 高频交易大模型投喂 机器学习特征工程 异常交易识别SVM随机森林 本数据集通过ISOTS 8000数据质量认证支持MatlabPython量化平台无缝对接 【版权说明】 数据源:银禾金融数据库,解释权归该数据库所有。

2025-07-26

Level2逐笔成交Tick数据十档五级分钟级历史股票行情CSV

沪深证券市场历史高频数据集 数据格式CSV标准表格GB2312编码 证券品种A股ETF综合指数可转债等金融产品 数据粒度Level2行情逐笔委托逐笔成交十档订单簿Level1行情五档订单簿分笔数据 时间周期分钟级15153060分钟日周月线覆盖2000年至今完整交易周期 存储架构 Level2行情包20TB含毫秒级时间戳 订单簿数据包8TB十档五档历史快照 衍生数据集400GB技术指标清洗后特征数据 适用场景 1 量化策略研发支持PandasNumPy直接读取适配TensorFlowPyTorch框架 2 高频交易回测提供tick级市场深度数据支持ARIMALSTMTransformer模型训练 3 风险控制建模订单流异常检测孤立森林算法流动性风险预警GARCH模型 4 智能投研市场微观结构研究统计套利策略验证交易成本计量分析 5 学术研究有效市场假说检验限价订单簿动力学建模高频因子挖掘 数据质量经过标准化预处理时间对齐异常值过滤断点修复符合DolphinDBQuantConnect等主流回测平台数据规范适用于深度神经网络训练与金融工程开发 【版权说明】 数据源:银禾金融数据库,解释权归该数据库所有。

2025-07-26

Level-2逐笔Tick五档十档分钟级股票历史行情CSV

CSV格式沪深市场全品种历史高频数据集2000年至今 编码格式GB2312 数据类型 股票ETF指数可转债分级基金 数据粒度 Level2行情逐笔委托毫秒级精度逐笔成交毫秒级精度十档五档报价 K线数据分笔15153060分钟日周月 总规模Level2超20TB档位数据8TB分钟数据400GB 存储形式 网盘加密压缩包 核心价值 1 Pandas直接加载支持Python快速导入解析适配量化系统对接 2 高频策略验证ARIMALSTM强化学习模型验证支持算法交易仿真 3 市场微观分析订单簿动态重建统计套利做市策略压力测试 4 风险建模基于DBSCAN聚类识别异常交易市场冲击成本测算 5 学术研究支撑流动性因子构建波动率预测市场微观结构理论验证 6 大模型训练提供50TB时序训练集支持Transformer架构模型开发 质量保证 深清洗结构化数据涵盖换股合并等特殊事件校准通过Tick级回测验证满足 私募实盘策略研发 券商风控系统测试 学术论文实证分析JFEReview of Financial Studies等顶级期刊数据标准 适用对象量化机构金融科技企业经济金融研究机构个人开发者 【版权说明】 数据源:银禾金融数据库,解释权归该数据库所有。

2025-07-26

Level2逐笔成交及十档买卖分钟级股票全量数据csv

沪深市场历史高频数据集(CSV格式) 编码格式:GB2312 ■ 数据范围 - 标的类型:沪深股票/ETF/指数/可转债等 - 时间跨度:2000年至今 - 数据频率: Level2行情(逐笔成交/逐笔委托/十档五档订单簿) 分时数据(分笔/1/5/15/30/60分钟/日/周/月线) - 存储规格: Level2原始数据>20TB | 十档五档数据>8TB 其他频段数据>400GB(网盘加密压缩包存储) ■ 核心价值 1. 支持Python量化开发:结构化CSV兼容pandas(read_csv)高速读写,支持NumPy向量化运算 2. 算法验证场景: ✓ 高频策略回测(ARIMA/LSTM时序预测) ✓ 统计套利建模(市场微观结构分析) ✓ 交易成本测算(滑点/冲击成本仿真) 3. 智能引擎训练: ✓ 深度学习模型(订单簿LOB特征提取) ✓ 大模型预训练(3000+标的跨品种关联分析) 4. 监测系统构建: ✓ 异常交易模式识别(孤立森林/聚类算法) ✓ 流动性风险预警(波动率曲面生成) ■ 质量保障 数据经异常值清洗、时钟校准、集合竞价滤波处理,满足NASDAQ 7×24系统兼容性验证,适用于资管系统对接、多因子框架开发及金融工程学术研究。 【版权说明】 数据源:银禾金融数据库,解释权归该数据库所有。

2025-07-25

A股港美股level2逐笔分钟期权期货指数可转债等历史高频数据获取

沪深市场历史高频数据集(CSV格式) 编码格式:GB2312 数据范围 - 标的类型:沪深股票/ETF/指数/可转债等 - 时间跨度:2000年至今 - 数据频率: Level2行情(逐笔成交/逐笔委托/十档五档订单簿) 分时数据(分笔/1/5/15/30/60分钟/日/周/月线) - 存储规格: Level2原始数据>20TB | 十档五档数据>8TB 其他频段数据>400GB(网盘加密压缩包存储) ■ 核心价值 1. 支持Python量化开发:结构化CSV兼容pandas(read_csv)高速读写,支持NumPy向量化运算 2. 算法验证场景: 高频策略回测(ARIMA/LSTM时序预测) 统计套利建模(市场微观结构分析) 交易成本测算(滑点/冲击成本仿真) 3. 智能引擎训练: 深度学习模型(订单簿LOB特征提取) 大模型预训练(3000+标的跨品种关联分析) 4. 监测系统构建: 异常交易模式识别(孤立森林/聚类算法) 流动性风险预警(波动率曲面生成) 质量保障 数据经异常值清洗、时钟校准、集合竞价滤波处理,满足NASDAQ 7×24系统兼容性验证,适用于资管系统对接、多因子框架开发及金融工程学术研究。 【版权说明】 数据源:银禾金融数据库,解释权归该数据库所有。

2025-07-25

港股历史逐笔十档订单簿分钟日数据下载

csv格式港股历史高频数据集(GB2312编码) ─────────────────────────────────── 【数据种类】逐笔成交|订单簿快照|分钟K线|多周期聚合数据 【时间跨度】2005年至今完整历史数据 【数据精度】 - Level2逐笔数据:包含十档订单簿及逐笔成交明细(≥1TB) - 多频段K线:1/5/15/30/60分钟+日/周/月线(≥100GB) 【技术特性】 ● 存储方式:网盘加密压缩包 ● 数据规范:经时间戳对齐及异常值清洗 ● 格式兼容:原生csv适配Python(pandas.read_csv)及量化平台 【应用场景】 ◆ 高频策略验证:ARIMA/LSTM时序预测、做市商策略模拟、冲击成本测算 ◆ 风险建模:市场操纵模式识别、流动性风险压力测试 ◆ AI训练:深度强化学习(DRL)策略生成、OrderBook特征工程 ◆ 学术研究:市场微观结构分析、波动率聚类效应验证 【质量保障】 √ 订单簿重构误差<0.1% √ Tick数据时延校准至交易所时钟 √ 提供完整的symbol-mapping表及除权处理说明 本数据集通过PCAOB审计标准校验,适用于《金融研究》等核心期刊论文的实证分析,满足资管机构合规性回测要求。 【版权说明】 数据源:银禾金融数据库,解释权归该数据库所有。

2025-07-23

港股历史逐笔十档订单簿分钟日数据下载

csv格式港股历史高频数据集(GB2312编码) ─────────────────────────────────── 【数据种类】逐笔成交|订单簿快照|分钟K线|多周期聚合数据 【时间跨度】2005年至今完整历史数据 【数据精度】 - Level2逐笔数据:包含十档订单簿及逐笔成交明细(≥1TB) - 多频段K线:1/5/15/30/60分钟+日/周/月线(≥100GB) 【技术特性】 ● 存储方式:网盘加密压缩包 ● 数据规范:经时间戳对齐及异常值清洗 ● 格式兼容:原生csv适配Python(pandas.read_csv)及量化平台 【应用场景】 ◆ 高频策略验证:ARIMA/LSTM时序预测、做市商策略模拟、冲击成本测算 ◆ 风险建模:市场操纵模式识别、流动性风险压力测试 ◆ AI训练:深度强化学习(DRL)策略生成、OrderBook特征工程 ◆ 学术研究:市场微观结构分析、波动率聚类效应验证 【质量保障】 √ 订单簿重构误差<0.1% √ Tick数据时延校准至交易所时钟 √ 提供完整的symbol-mapping表及除权处理说明 本数据集通过PCAOB审计标准校验,适用于《金融研究》等核心期刊论文的实证分析,满足资管机构合规性回测要求。 【版权说明】 数据源:银禾金融数据库,解释权归该数据库所有。

2025-07-23

获取期权Level2五档Tick分时日频历史行情CSV

CSV格式国内外期权历史高频数据集 【数据类型】:商品期权、指数期权、ETF期权、美股期权 【时间范围】:2010年至今 【频段划分】: - Level 2五档订单簿(数据量≥8TB) - 分钟级K线(1/5/15/30/60分钟)及日/周/月线(数据量≥800GB) 【存储形式】:网盘压缩包分层存储,按品种与频率分类归档 【数据应用】: 1. Python量化分析:原生支持pandas(read_csv)高效加载,适配机器学习框架(TensorFlow/PyTorch) 2. 高频策略验证:基于L1/L2行情重构盘口,支持做市商报价策略、统计套利模型及市场微观结构研究 3. 风险管理:异常交易检测(孤立森林/聚类算法)、流动性冲击模拟(压力测试) 4. 大模型训练:订单簿时空特征提取(Transformer/GNN),波动率曲面拟合与定价误差修正 5. 多场景适用: - 私募实盘算法性能校准 - 学术实证研究(市场有效性检验、期权定价理论修正) - 个人量化系统开发(多因子策略夏普率优化) 【数据质量】:经标准化清洗(缺失值插补/跳价过滤/合约映射),包含交易日期、精确时间戳、买卖价量及隐含波动率字段,满足EMA/SMA等指标滚动计算需求 【版权说明】 数据源:银禾金融数据库,解释权归该数据库所有。

2025-07-23

抓取境内外指数分时日频Tick行情CSV

CSV格式国内外指数高频历史数据库(GB2312编码) 【数据集概要】 证券品种:指数现货行情/期货/期权合约、美股大盘指数 时间跨度:2000年1月-当前持续更新 时间颗粒度:逐笔成交(tick)级;1/5/15/30/60分钟;日/周/月 储存规范:网盘加密压缩包存储(Tick级>100GB,分钟级>20GB/品种) 【技术特性】 1. 结构化处理:已完成缺失值填充、异常值校正、时区统一化处理 2. 字段完备性: - 行情类:Open/High/Low/Close/Volume/持仓量(期货期权) - Level2数据:订单簿切片(买卖五档报价+深度总量) 3. Python兼容:通过Pandas.read_csv()可直接加载为DataFrame结构 【核心应用】 量化策略:高频做市/统计套利策略回测(含滑点模拟与冲击成本建模) AI训练:长短期记忆网络(LSTM)、时序卷积网络(TCN)等模型特征提取 风险工程:市场流动性风险预警、极端行情压力测试 学术研究:有效市场假说验证、波动率曲面建模、衍生品定价理论优化 【数据服务】 认证机构:私募/券商自营团队可申请API实时接口 研究支持:高校课题组可获取定制化时间段样本 个人用户:提供SQLite数据库查询工具链 (适用于量化投研系统开发、金融工程论文实证、监管科技系统搭建等场景) 【版权说明】 数据源:银禾金融数据库,解释权归该数据库所有。

2025-07-22

抓取境内外指数分时日频Tick行情CSV

CSV格式国内外指数高频历史数据库(GB2312编码) 【数据集概要】 证券品种:指数现货行情/期货/期权合约、美股大盘指数 时间跨度:2000年1月-当前持续更新 时间颗粒度:逐笔成交(tick)级;1/5/15/30/60分钟;日/周/月 储存规范:网盘加密压缩包存储(Tick级>100GB,分钟级>20GB/品种) 【技术特性】 1. 结构化处理:已完成缺失值填充、异常值校正、时区统一化处理 2. 字段完备性: - 行情类:Open/High/Low/Close/Volume/持仓量(期货期权) - Level2数据:订单簿切片(买卖五档报价+深度总量) 3. Python兼容:通过Pandas.read_csv()可直接加载为DataFrame结构 【核心应用】 量化策略:高频做市/统计套利策略回测(含滑点模拟与冲击成本建模) AI训练:长短期记忆网络(LSTM)、时序卷积网络(TCN)等模型特征提取 风险工程:市场流动性风险预警、极端行情压力测试 学术研究:有效市场假说验证、波动率曲面建模、衍生品定价理论优化 【数据服务】 认证机构:私募/券商自营团队可申请API实时接口 研课题组可获取定制化时间段样本 个人用户:提供SQLite数据库查询工具链 (适用于量化投研系统开发、金融工程论文实证、监管科技系统搭建等场景)

2025-07-22

A股股票level2逐笔委托逐笔成交毫秒tick数据

记录每一笔成交委托信息的,是交易所股票最详细的数据,需要更多可留言

2025-02-09

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除