机器学习(Machine Learning)是人工智能(AI)的一个子领域,它涉及到通过数据和算法使计算机系统能够自动学习和改进,以执行特定任务,而无需明确编程。简而言之,机器学习是一种让计算机从经验中学习的方法。
机器学习的主要类型包括:
-
监督学习(Supervised Learning):在这种类型中,模型通过带标签的数据(输入-输出对)进行训练。模型的目标是学习输入与输出之间的关系,以便在遇到新的输入时能够预测其输出。例如,分类问题和回归问题。
-
无监督学习(Unsupervised Learning):与监督学习不同,无监督学习使用的是没有标签的数据。模型的任务是从数据中提取模式或结构,例如聚类和关联规则学习。
-
半监督学习(Semi-Supervised Learning):结合了监督学习和无监督学习的特性,使用大量未标记的数据和少量标记的数据来进行训练。这在标记数据获取成本高昂的情况下尤为重要。
-
强化学习(Reinforcement Learning):这种方法通过与环境的互动来学习。在每一步中,智能体根据当前状态选择动作,并根据采取的动作获得奖励或惩罚,目标是最大化长期奖励。
机器学习的应用非常广泛,包括图像识别、自然语言处理、推荐系统、金融市场预测等。