0不能做除数源自定理:加法单位元不存在乘法逆元。抽象代数中引入乘法单位元,记为1,满足1 ≠ 0,且𝑥 × 1 = 𝑥,可证乘法单位元是唯一的。1 = 0的情况被排除,不属于域的公理,此时被称为零环。可证零环只有一个元素,并且此时0也可以做除数。然后我们也想对于每一个元素引入乘法逆元,记为𝑥⁻¹,满足𝑥 × 𝑥⁻¹ = 1。但是,对于0,这是不可能的,因为0 × 𝑦 + 𝑦 = 0 × 𝑦 + 1 × 𝑦 = (0 + 1) × 𝑦 = 1 × 𝑦 = 𝑦 。综上必有对于任意𝑦,有0 × 𝑦 = 0 。可见,并不存在一个元素满足0 × 𝑦 = 1 。然后我们可以发现,(−1) × 𝑦 + 𝑦 = (1 + (−1)) × 𝑦 = 0 × 𝑦 = 0 ,于是根据逆元的唯一性,(−1) × 𝑦 = −𝑦 。然后我们定义减法,𝑥 − 𝑦 = 𝑥 + (−𝑦),定义除法, 𝑥 ÷ 𝑦 = 𝑥 × 𝑦⁻¹,显然定义除法需要𝑦的逆元存在,所以𝑦 ≠ 0。还能证明,如果𝑥 × 𝑦 = 0,则一定有𝑥 = 0或𝑦 = 0。当𝑥 ≠ 0的时候,左右乘以𝑥⁻¹即可得证。 若强行要求0能够作除数,会引发矛盾。数学中不允许。
满足域公理性质的集合ℱ称为域。实数和复数,都构成域,因此无法以0做除数。如果说这些性质是强行规定,你当然可以不满足其中的一些性质,但那就不为域了。比如不要求乘法逆元的存在就不是域了而是幺环。这时候就会有很多不同的性质了,比如𝑥𝑦 = 0并不能推出𝑥 = 0或者𝑦 = 0。进一步还会出现“理想”的概念。如果你要求乘法单位元也不存在,那就成了一个不含幺的交换环。如果你要求乘法交换律也不满足,那就是一个环,而不是交换环。
有人认为先有0不为除数才有公理,从公理化出发是本末倒置。而在我看来,即使公理框架没有形成,但是逻辑仍然是存在的,公理化只是把关键性质提取出来。在建立域公理之前,计算乘法和加法,就已经在使用分配律了;定义除法就已经在使用逆元了。正是这些运算性质导致0不为除数的结论。最好的证明是:如果不要求逆元存在,域就变成了环。而在环内,就会存在很多没有逆元的元素,它们可以构成不同的理想。这些元素同样不能做除数。不仅仅是0不能作除数。
此外,0的本质实际上是个占位符而不是数。也就是说作除法时它不能占分母的位置。
(本文大部分摘自知乎)