- 博客(2)
- 收藏
- 关注
原创 【论文阅读】NeurIPS 2024 图结构学习新方向:超越关系冗余,信息感知的无监督多重图结构学习
该论文首次对现实多关系图中的结构可靠性和非冗余问题进行了深入探索。所提出的无监督图结构学习框架InfoMGF对多重图结构进行了精炼与融合,以消除与任务无关的噪声,同时最大化不同图之间共享的和特定的任务相关信息。理论和实验均证明了所提出方法的有效性。
2024-12-12 21:36:40
3474
1
原创 【论文阅读】ACM MM 2024 平衡的多关系图聚类 (Balanced Multi-Relational Graph Clustering)
多关系图聚类在揭示复杂网络中的底层模式方面表现出显著的成功。代表性方法在对比学习的进步的推动下设法将不同的视图对齐。我们的实证研究发现,现实世界图中普遍存在不平衡现象,这在原则上与对齐的动机相矛盾。在本文中,我们首先提出了一种新颖的度量标准,即聚合类距离,以实证量化不同图之间的结构差异。为了解决视图不平衡的挑战,我们提出了平衡多关系图聚类 (BMGC),包括无监督主导视图挖掘和双信号引导的表示学习。它在整个训练过程中动态挖掘主导视图,与表示学习协同提高聚类性能。理论分析确保了主导视图挖掘的有效性。
2024-12-05 22:50:50
1582
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅