计算机视觉应用实践
计算机视觉(Computer Vision,CV)是人工智能的重要分支,旨在使计算机能够理解和处理图像与视频数据。近年来,随着深度学习技术的快速发展,计算机视觉在图像分类、目标检测、图像生成等领域取得了显著进展。本文将深入探讨计算机视觉的核心技术、应用场景及其实际案例,并通过代码示例帮助读者理解其实现方法。
1. 计算机视觉核心技术
1.1 图像分类
图像分类是计算机视觉的基础任务,旨在为输入图像分配一个类别标签。经典的卷积神经网络(CNN)是图像分类的主流方法。
# 示例:使用PyTorch实现图像分类
import torch
import torch.nn as nn
import torchvision.models as models
# 加载预训练的ResNet模型
model = models.resnet18(pretrained=True)
model.fc = nn.Linear(model.fc.in_features, 10) # 修改输出层为10类
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
# 训练模型(伪代码)
for epoch in range(10):
for images, labels in train_loader:
outputs = model(images)
loss = criterion(outputs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
1.2 目标检测
目标检测不仅需要识别图像中的物体,还需要定位其位置。YOLO(You Only Look Once)和Faster R-CNN是两种流行的目标检测算法。
# 示例:使用YOLOv5进行目标检测
from yolov5 i