【机器学习|学习笔记】监督学习(Supervised Learning)和非监督学习(Unsupervised Learning)起源、发展、原理、应用、优缺点、经典模型详解。

【机器学习|学习笔记】监督学习(Supervised Learning)和非监督学习(Unsupervised Learning)起源、发展、原理、应用、优缺点、经典模型详解。

【机器学习|学习笔记】监督学习(Supervised Learning)和非监督学习(Unsupervised Learning)起源、发展、原理、应用、优缺点、经典模型详解。



欢迎铁子们点赞、关注、收藏!
祝大家逢考必过!逢投必中!上岸上岸上岸!upupup

大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文。详细信息可关注VX “学术会议小灵通”或参考学术信息专栏:https://blog.csdn.net/2401_89898861/article/details/147776758


前言

  • 监督学习(Supervised Learning)和非监督学习(Unsupervised Learning)是机器学习的两大基本范式,它们根据数据是否包含“标签”(即目标输出)进行区分。

一、监督学习(Supervised Learning)

1. 起源

  • 监督学习起源于统计学习理论和早期的人工智能研究,特别是模式识别和回归分析。20世纪60年代以来,感知机(Perceptron)模型作为最早的监督学习算法被提出,为后续神经网络的发展奠定了基础。

2. 发展

  • 20世纪80-90年代:支持向量机(SVM)、决策树等算法逐步成熟
  • 2006年以后:深度学习(如CNN、RNN)使监督学习取得突破性进展
  • 近年:Transformer等结构将监督学习带入自然语言处理和视觉识别的新高峰

3. 原理

监督学习的核心是“学习一个从输入到输出的映射函数”。训练数据包含输入-输出对 ( x , y ) (x, y) (x,y),学习目标是找到一个函数 f ( x ) f(x) f(x),使得在新样本上也能正确预测输出 y ^ \hat{y} y^,如:

  • 分类问题:预测离散标签(如猫/狗)
  • 回归问题:预测连续值(如房价、温度)

损失函数(如交叉熵、均方误差)用于度量预测误差,训练过程通过最小化损失实现模型优化

4. 应用

  • 图像识别(如ImageNet)
  • 语音识别(如语音转文字)
  • 自然语言处理(如情感分类)
  • 医疗诊断(如癌症分类)
  • 金融风控(如欺诈识别)

5. 优缺点

优点:
  • 精度高,模型稳定;
  • 易于评估性能(有ground truth);
  • 可解释性好(如决策树)。
缺点:
  • 依赖大量标注数据,成本高;
  • 对未知情况的泛化能力受限;
  • 难以处理未标注数据或复杂结构数据。

6. 经典模型

  • 线性回归 / 逻辑回归(Regression)
  • 决策树(Decision Tree)、随机森林(Random Forest)
  • 支持向量机(SVM)
  • K近邻(KNN)
  • 神经网络(MLP、CNN、RNN)
  • Transformer / BERT(自然语言处理)

二、非监督学习(Unsupervised Learning)

1. 起源

  • 非监督学习起源于数据探索(Exploratory Data Analysis)和群体结构发现,早期如K均值聚类、主成分分析(PCA)等方法均为此类。

2. 发展

  • 20世纪60年代:K-Means等传统聚类算法被提出
  • 80-90年代:自编码器、神经网络引入非监督学习
  • 2014年后:生成对抗网络(GAN)、对比学习(Contrastive Learning)带来革命性进展
  • 近期:自监督学习(Self-supervised Learning)成为热点(如SimCLR, BYOL, MAE)。

3. 原理

非监督学习的目标是从无标签数据中挖掘潜在结构、模式或表示。输入数据只有 x x x,没有输出 y y y,学习目标是发现:

  1. 数据的潜在分布(如聚类)
  2. 数据的低维表示(如降维)
  3. 数据之间的相似性(如图嵌入)

常用方法包括优化目标函数,如最小重构误差、最大似然估计、最小信息损失等

4. 应用

  • 聚类分析(用户分群、图像聚类)
  • 数据降维(PCA、t-SNE)
  • 特征学习(自编码器、对比学习)
  • 异常检测(如信用卡欺诈)
  • 推荐系统(如协同过滤)

5. 优缺点

优点:
  • 无需人工标注,适合大规模数据;
  • 能发现隐藏结构;
  • 可作为预训练方法提升监督学习效果。
缺点:
  • 模型评估困难(无Ground Truth);
  • 可解释性较差;
  • 结果不稳定(聚类初始值敏感等问题)。

6. 经典模型

聚类模型:
  • K-means、DBSCAN、层次聚类
降维模型:
  • PCA、t-SNE、UMAP
概率模型:
  • 高斯混合模型(GMM)、隐马尔可夫模型(HMM)
神经网络模型:
  • 自编码器(Autoencoder)
  • 生成对抗网络(GAN)
  • 对比学习模型(SimCLR, MoCo, BYOL)
  • Masked AutoEncoder(MAE, NLP/图像)

三、监督学习 vs 非监督学习 总结对比表

项目监督学习非监督学习
是否有标签有(输入 + 输出)无标签
学习目标学习映射函数发现结构或分布
模型评估准确率、召回率、F1 等难以直接评估
应用示例分类、回归聚类、降维、异常检测
对数据要求需要标注数据原始未标注数据即可
代表模型SVM, CNN, BERTK-means, PCA, GAN
优点高精度、可控性好标注成本低、可发现潜在结构
缺点需大量标签、泛化能力有限结果不确定、评估困难
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

努力毕业的小土博^_^

您的鼓励是我创作的动力!谢谢!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值