【机器学习|学习笔记】监督学习(Supervised Learning)和非监督学习(Unsupervised Learning)起源、发展、原理、应用、优缺点、经典模型详解。
【机器学习|学习笔记】监督学习(Supervised Learning)和非监督学习(Unsupervised Learning)起源、发展、原理、应用、优缺点、经典模型详解。
文章目录
欢迎铁子们点赞、关注、收藏!
祝大家逢考必过!逢投必中!上岸上岸上岸!upupup
大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文。详细信息可关注VX “
学术会议小灵通
”或参考学术信息专栏:https://blog.csdn.net/2401_89898861/article/details/147776758
前言
- 监督学习(Supervised Learning)和非监督学习(Unsupervised Learning)是机器学习的两大基本范式,它们根据数据是否包含“标签”(即目标输出)进行区分。
一、监督学习(Supervised Learning)
1. 起源
- 监督学习起源于统计学习理论和早期的人工智能研究,特别是模式识别和回归分析。20世纪60年代以来,感知机(Perceptron)模型作为最早的监督学习算法被提出,为后续神经网络的发展奠定了基础。
2. 发展
- 20世纪80-90年代:支持向量机(SVM)、决策树等算法逐步成熟;
- 2006年以后:深度学习(如CNN、RNN)使监督学习取得突破性进展;
- 近年:Transformer等结构将监督学习带入自然语言处理和视觉识别的新高峰。
3. 原理
监督学习的核心是“学习一个从输入到输出的映射函数”。训练数据包含输入-输出对 ( x , y ) (x, y) (x,y),学习目标是找到一个函数 f ( x ) f(x) f(x),使得在新样本上也能正确预测输出 y ^ \hat{y} y^,如:
- 分类问题:预测离散标签(如猫/狗)
- 回归问题:预测连续值(如房价、温度)
损失函数(如交叉熵、均方误差)用于度量预测误差,训练过程通过最小化损失实现模型优化。
4. 应用
- 图像识别(如ImageNet)
- 语音识别(如语音转文字)
- 自然语言处理(如情感分类)
- 医疗诊断(如癌症分类)
- 金融风控(如欺诈识别)
5. 优缺点
优点:
- 精度高,模型稳定;
- 易于评估性能(有ground truth);
- 可解释性好(如决策树)。
缺点:
- 依赖大量标注数据,成本高;
- 对未知情况的泛化能力受限;
- 难以处理未标注数据或复杂结构数据。
6. 经典模型
- 线性回归 / 逻辑回归(Regression)
- 决策树(Decision Tree)、随机森林(Random Forest)
- 支持向量机(SVM)
- K近邻(KNN)
- 神经网络(MLP、CNN、RNN)
- Transformer / BERT(自然语言处理)
二、非监督学习(Unsupervised Learning)
1. 起源
- 非监督学习起源于数据探索(Exploratory Data Analysis)和群体结构发现,早期如K均值聚类、主成分分析(PCA)等方法均为此类。
2. 发展
- 20世纪60年代:K-Means等传统聚类算法被提出;
- 80-90年代:自编码器、神经网络引入非监督学习;
- 2014年后:生成对抗网络(GAN)、对比学习(Contrastive Learning)带来革命性进展;
- 近期:自监督学习(Self-supervised Learning)成为热点(如SimCLR, BYOL, MAE)。
3. 原理
非监督学习的目标是从无标签数据中挖掘潜在结构、模式或表示。输入数据只有 x x x,没有输出 y y y,学习目标是发现:
- 数据的潜在分布(如聚类)
- 数据的低维表示(如降维)
- 数据之间的相似性(如图嵌入)
常用方法包括优化目标函数,如最小重构误差、最大似然估计、最小信息损失等。
4. 应用
- 聚类分析(用户分群、图像聚类)
- 数据降维(PCA、t-SNE)
- 特征学习(自编码器、对比学习)
- 异常检测(如信用卡欺诈)
- 推荐系统(如协同过滤)
5. 优缺点
优点:
- 无需人工标注,适合大规模数据;
- 能发现隐藏结构;
- 可作为预训练方法提升监督学习效果。
缺点:
- 模型评估困难(无Ground Truth);
- 可解释性较差;
- 结果不稳定(聚类初始值敏感等问题)。
6. 经典模型
聚类模型:
- K-means、DBSCAN、层次聚类
降维模型:
- PCA、t-SNE、UMAP
概率模型:
- 高斯混合模型(GMM)、隐马尔可夫模型(HMM)
神经网络模型:
- 自编码器(Autoencoder)
- 生成对抗网络(GAN)
- 对比学习模型(SimCLR, MoCo, BYOL)
- Masked AutoEncoder(MAE, NLP/图像)
三、监督学习 vs 非监督学习 总结对比表
项目 | 监督学习 | 非监督学习 |
---|---|---|
是否有标签 | 有(输入 + 输出) | 无标签 |
学习目标 | 学习映射函数 | 发现结构或分布 |
模型评估 | 准确率、召回率、F1 等 | 难以直接评估 |
应用示例 | 分类、回归 | 聚类、降维、异常检测 |
对数据要求 | 需要标注数据 | 原始未标注数据即可 |
代表模型 | SVM, CNN, BERT | K-means, PCA, GAN |
优点 | 高精度、可控性好 | 标注成本低、可发现潜在结构 |
缺点 | 需大量标签、泛化能力有限 | 结果不确定、评估困难 |