【学术会议前沿信息|科研必备】 EI检索|机械自动化、智能制造、智慧能源、电气工程、新能源科学与电力工程、清洁能源多领域国际会议征稿启动!

【学术会议前沿信息|科研必备】🌟 EI检索|机械自动化、智能制造、智慧能源、电气工程、新能源科学与电力工程、清洁能源多领域国际会议征稿启动!

【学术会议前沿信息|科研必备】🌟 EI检索|机械自动化、智能制造、智慧能源、电气工程、新能源科学与电力工程、清洁能源多领域国际会议征稿启动!



欢迎铁子们点赞、关注、收藏!
祝大家逢考必过!逢投必中!上岸上岸上岸!upupup

大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文。详细信息可扫描博文下方二维码 “学术会议小灵通”或参考学术信息专栏:https://ais.cn/u/mmmiUz


前言

  • 魔都上海、鹭岛厦门、花城广州、江南常州,四座创新城市邀您共赴学术盛会,在科研道路上携手共进!

🔧 2025年第六届机械自动化与智能制造国际会议(MAIM 2025)

  • 2025 6th International Conference on Mechanical Automation and Intelligent Manufacturing
  • 时间地点:2025年12月19-21日丨中国·上海
  • 亮点:IEEE出版保障快速稳定检索,聚焦智能制造与机械工程创新,推动产业智能化升级发展!
  • 检索:IEEE出版,收录IEEE Xplore,提交EI Compendex、Scopus检索
  • 适合投稿人群:机械自动化与智能制造领域硕博生,致力于智能装备与制造系统优化的工程师学者!
  • 算法示例:协同协同进化遗传算法(CCGA)的任务分配优化——此代码示例参考了在南极环境中解决多机器人任务调度问题的协同协同进化遗传算法(CCGA)。它通过将复杂的任务分解为子问题并由多个遗传算法种群协同进化,有效解决了传统算法在大规模问题上面临的挑战。
import numpy as np

def cooperative_coevolutionary_ga(tasks, robots, max_gens=100):
    """
    简化的协同协同进化遗传算法(CCGA)用于多机器人任务分配
    参考了在复杂环境(如南极)中多机器人任务调度的研究[citation:7]"""
    # 初始化:将任务基于几何信息(如距离、方位)分解为子群
    subpopulations = geometric_task_decomposition(tasks, num_subpops=3)
    
    best_global_solution = None
    best_global_fitness = -np.inf
    
    for gen in range(max_gens):
        for i, subpop in enumerate(subpopulations):
            # 独立进化:对每个任务子群运行遗传算法
            evolved_subpop, local_best_fitness = evolve_subpopulation(subpop, robots)
            subpopulations[i] = evolved_subpop
            
            # 协同评估:组合各子群最优解,评估全局性能
            current_global_solution = collaborate(subpopulations)
            current_global_fitness = evaluate_global(current_global_solution, tasks, robots)
            
            # 更新全局最优
            if current_global_fitness > best_global_fitness:
                best_global_fitness = current_global_fitness
                best_global_solution = current_global_solution.copy()
                
    return best_global_solution, best_global_fitness

def geometric_task_decomposition(tasks, num_subpops):
    """基于任务间的几何关系(如距离和方位)进行任务分解"""
    # 简化的聚类过程,实际应用可能使用更复杂的iVec聚类[citation:7]
    centroids_indices = np.random.choice(len(tasks), num_subpops, replace=False)
    centroids = [tasks[i] for i in centroids_indices]
    
    subpopulations = [[] for _ in range(num_subpops)]
    for task in tasks:
        # 计算任务到所有质心的距离,分配到最近的子群
        distances = [np.linalg.norm(np.array(task) - np.array(centroid)) for centroid in centroids]
        closest_subpop = np.argmin(distances)
        subpopulations[closest_subpop].append(task)
        
    return subpopulations

# 示例使用
tasks = [(1, 2), (3, 4), (5, 1), (2, 5), (4, 3)] # 任务位置
robots = ['R1', 'R2', 'R3']
solution, fitness = cooperative_coevolutionary_ga(tasks, robots)
print(f"最优任务分配: {solution}")
print(f"适应度: {fitness}")

⚡ 第四届智慧能源与电气工程国际会议(SEEE 2025)

  • 2025 4th International Conference on Smart Energy and Electrical Engineering
  • 时间地点:2025年12月19-21日丨中国·厦门
  • 亮点:厦门大学主办汇聚多所顶尖高校科研力量,推动智慧能源与电气工程前沿技术创新!
  • 检索:会议论文集出版,提交核心期刊推荐与数据库检索
  • 适合投稿人群:智慧能源与电气工程领域硕博生,专注新能源技术与电力系统研究的创新者!
  • 算法示例:基于KL散度的自适应微电网差动保护——此代码示例参考了针对交流微电网的统计自适应差动保护方案。该方法利用KL散度(通过Bartlett校正的G统计量)来检测故障,即使在噪声环境中也能实现鲁棒的故障检测,适用于含有逆变型分布式电源的微电网。
import numpy as np
from scipy import stats

def kl_divergence_protection(current_samples, healthy_profile, threshold=0.5):
    """
    基于KL散度的自适应微电网差动保护
    参考了利用KL散度进行微电网保护的研究[citation:5]"""
    # 将电流样本转换为概率分布(例如,通过直方图)
    hist_current, bin_edges = np.histogram(current_samples, bins=10, density=True)
    hist_healthy, _ = np.histogram(healthy_profile, bins=bin_edges, density=True)
    
    # 避免零值,防止KL散度计算错误
    hist_current = np.clip(hist_current, 1e-10, 1)
    hist_healthy = np.clip(hist_healthy, 1e-10, 1)
    
    # 计算KL散度 (P_current || P_healthy)
    kl_divergence = stats.entropy(hist_current, hist_healthy)
    
    # 故障决策
    fault_detected = kl_divergence > threshold
    
    return fault_detected, kl_divergence

# 示例使用
# 模拟健康状态下的电流测量数据(例如,来自历史数据)
healthy_current_data = np.random.normal(100, 5, 1000) # 均值100A,标准差5A

# 模拟故障状态下(例如,电流增大并伴有谐波)
fault_current_data = np.random.normal(150, 20, 50) # 均值150A,标准差20A

# 进行保护判断
is_fault, kl_value = kl_divergence_protection(fault_current_data, healthy_current_data)

print(f"KL散度值: {kl_value:.4f}")
print(f"检测到故障: {is_fault}")

🌱 新能源科学与电力工程国际会议(NESEE 2025)

  • 2025 International Conference on New Energy System and Electrical Engineering
  • 时间地点:2025年12月19-21日丨中国·广州
  • 亮点:IEEE出版检索稳定可靠,聚焦可再生能源与电网系统,推动绿色能源技术创新发展!
  • 检索:IEEE出版,收录IEEE Xplore,提交EI、Scopus检索
  • 适合投稿人群:新能源与电力工程领域硕博生,致力于清洁能源技术与智能电网研发的研究者!
  • 算法示例:基于粒子群算法的风-水(抽水蓄能)联合优化调度——此代码示例参考了利用粒子群算法(PSO)对风电-水电(抽水蓄能)联合系统进行优化调度的研究。该算法通过平衡风能的间歇性和抽水蓄能的调节能力,实现系统运行效益最大化。
import numpy as np

def pso_wind_hydro_scheduling(wind_power_forecast, load_demand, max_iter=100):
    """
    基于粒子群算法的风-水联合优化调度
    参考了风电-水电(抽水蓄能)联合优化运行的研究[citation:8]"""
    # PSO参数初始化
    n_particles = 30
    n_variables = len(wind_power_forecast) # 优化变量数,例如每时段水电出力
    w = 0.7  # 惯性权重
    c1 = 1.5 # 个体认知参数
    c2 = 1.5 # 社会认知参数
    
    # 初始化粒子位置(水电出力计划)和速度
    particles_pos = np.random.uniform(0, 50, (n_particles, n_variables))
    particles_vel = np.random.uniform(-1, 1, (n_particles, n_variables))
    
    pbest_pos = particles_pos.copy()
    pbest_fitness = np.full(n_particles, -np.inf)
    
    gbest_pos = None
    gbest_fitness = -np.inf
    
    for iter in range(max_iter):
        for i in range(n_particles):
            # 计算适应度:目标函数(例如,总收益最大化或成本最小化)
            fitness = evaluate_fitness(particles_pos[i], wind_power_forecast, load_demand)
            
            # 更新个体最优
            if fitness > pbest_fitness[i]:
                pbest_fitness[i] = fitness
                pbest_pos[i] = particles_pos[i].copy()
            
            # 更新全局最优
            if fitness > gbest_fitness:
                gbest_fitness = fitness
                gbest_pos = particles_pos[i].copy()
        
        # 更新粒子速度和位置
        for i in range(n_particles):
            r1, r2 = np.random.rand(2)
            particles_vel[i] = (w * particles_vel[i] + 
                               c1 * r1 * (pbest_pos[i] - particles_pos[i]) + 
                               c2 * r2 * (gbest_pos - particles_pos[i]))
            particles_pos[i] += particles_vel[i]
            
    return gbest_pos, gbest_fitness

def evaluate_fitness(hydro_schedule, wind_forecast, load_demand):
    """评估调度方案的适应度(例如:总收益)"""
    total_supply = hydro_schedule + wind_forecast
    # 简化收益计算:满足负荷需求,同时避免过剩
    revenue = np.sum(np.minimum(total_supply, load_demand) * 0.2) # 假设固定电价
    cost = np.sum(hydro_schedule * 0.05) # 假设水电运行成本
    fitness = revenue - cost
    return fitness

# 示例使用
wind_forecast = np.random.uniform(20, 80, 24) # 24小时风电预测
load_demand = np.random.uniform(50, 100, 24)  # 24小时负荷预测

best_schedule, best_fitness = pso_wind_hydro_scheduling(wind_forecast, load_demand)
print(f"最优水电出力计划: {best_schedule}")
print(f"最佳适应度(收益): {best_fitness:.2f}")

💧 第十届清洁能源与发电技术国际会议(CEPGT 2025)

  • 2025 10th International Conference on Clean Energy and Power Generation Technology
  • 时间地点:2025年12月19-21日丨中国·常州
  • 亮点:IET出版连续多届检索稳定,专注清洁能源技术创新,推动绿色发展理念实践!
  • 检索:IET出版,收录IET数字图书馆,提交EI Compendex、Scopus检索
  • 适合投稿人群:清洁能源与发电技术领域硕博生,专注生态电力与绿色发展的科研工作者!
  • 算法示例:考虑阶梯碳交易的虚拟电厂优化调度——此代码示例参考了含P2G-CCS耦合和燃气掺氢的虚拟电厂优化调度研究。该模型将阶梯碳交易机制引入优化目标,激励虚拟电厂降低碳排放,同时协调多种清洁能源技术。
import numpy as np

def vpp_optimization_with_carbon_trading(load_demand, wind_power, gas_price, carbon_quota):
    """
    考虑阶梯碳交易的虚拟电厂优化调度模型
    参考了含P2G-CCS耦合和燃气掺氢的VPP优化研究[citation:6]"""
    # 模型参数
    p2g_efficiency = 0.6  # 电转气效率
    ccs_capture_rate = 0.9 # 碳捕集效率
    h2_blending_ratio = 0.2 # 燃气掺氢比例
    
    # 决策变量(简化版):燃气机组出力,P2G耗电功率,CCS运行状态
    gas_power = np.clip(load_demand - wind_power, 0, None) # 燃气机组补偿负荷缺口
    
    # P2G消耗多余风电,生产氢气/甲烷
    excess_wind = np.maximum(wind_power - load_demand, 0)
    p2g_power = np.minimum(excess_wind, 50) # P2G最大功率限制
    
    # 计算碳排放(考虑CCS捕集和燃气掺氢)
    base_emission = gas_power * 0.5 # 基础碳排放因子 (tCO2/MWh)
    captured_emission = base_emission * ccs_capture_rate
    # 掺氢降低碳排放
    h2_emission_reduction = base_emission * h2_blending_ratio * 0.3
    net_emission = base_emission - captured_emission - h2_emission_reduction
    
    # 计算阶梯碳交易成本
    carbon_cost = calculate_step_carbon_cost(net_emission, carbon_quota)
    
    # 总成本(包括燃料成本和碳交易成本)
    fuel_cost = gas_power * gas_price
    total_cost = fuel_cost + carbon_cost
    
    return total_cost, net_emission, carbon_cost

def calculate_step_carbon_cost(net_emission, carbon_quota):
    """计算阶梯碳交易成本"""
    excess_emission = net_emission - carbon_quota
    if excess_emission <= 0:
        return 0 # 无超额排放,碳成本为0
    else:
        # 阶梯碳价:超额部分价格递增
        if excess_emission <= 10:
            return excess_emission * 100  # 第一阶梯价格
        elif excess_emission <= 20:
            return 10*100 + (excess_emission-10)*150 # 第二阶梯价格
        else:
            return 10*100 + 10*150 + (excess_emission-20)*200 # 第三阶梯价格

# 示例使用
load_demand = np.array([100, 110, 105, 95]) # 4个时段的负荷
wind_power = np.array([80, 60, 90, 70])     # 4个时段的风电
gas_price = 0.08 # 燃气价格
carbon_quota = 10 # 碳排放配额

total_cost, net_emission, carbon_cost = vpp_optimization_with_carbon_trading(
    load_demand, wind_power, gas_price, carbon_quota
)

print(f"总运行成本: {np.sum(total_cost):.2f}")
print(f"净碳排放: {net_emission}")
print(f"碳交易成本: {carbon_cost}")
  • 🎉 四城联袂打造能源与制造学术盛宴,投稿通道全面开启!快来与全球精英共绘创新蓝图,让您的研究成果在国际舞台绽放光彩!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不想努力的小土博

您的鼓励是我创作的动力!谢谢!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值