【C++进阶】二叉搜索树

1. 二叉搜索树的概念

⼆叉搜索树⼜称⼆叉排序树,它或者是⼀棵空树,或者是具有以下性质的⼆叉树:

  • 若它的左⼦树不为空,则左⼦树上所有结点的值都⼩于等于根结点的值
  • 若它的右⼦树不为空,则右⼦树上所有结点的值都⼤于等于根结点的值
  • 它的左右⼦树也分别为⼆叉搜索树
  • ⼆叉搜索树中可以⽀持插⼊相等的值,也可以不⽀持插⼊相等的值,具体看使⽤场景定义,后续我们学习map/set/multimap/multiset系列容器底层就是⼆叉搜索树,其中map/set不⽀持插⼊相等值,multimap/multiset⽀持插⼊相等值

2. 叉搜索树的性能分析 

最优情况下,⼆叉搜索树为完全⼆叉树(或者接近完全⼆叉树),其高度为:O\left ( \log_{2}N\right )
最差情况下,⼆叉搜索树退化为单⽀树(或者类似单⽀),其⾼度为:O\left ( N/2\right )
所以综合而言⼆叉搜索树增删查改时间复杂度为: O\left ( N\right )
那么这样的效率显然是⽆法满⾜我们需求的,我们后续课程需要继续讲解⼆叉搜索树的变形,平衡⼆叉搜索树AVL树和红⿊树,才能适⽤于我们在内存中存储和搜索数据。
另外需要说明的是,⼆分查找也可以实现 O\left ( \log_{2}N\right )级别的查找效率,但是⼆分查找有两大缺陷:
1. 需要存储在⽀持下标随机访问的结构中,并且有序。
2. 插⼊和删除数据效率很低,因为存储在下标随机访问的结构中,插入和删除数据⼀般需要挪动数
据。
这里也就体现出了平衡⼆叉搜索树的价值。

3. 叉搜索树的插入

插入的具体过程如下:
1. 树为空,则直接新增结点,赋值给root指针
2. 树不空,按⼆叉搜索树性质,插⼊值⽐当前结点大往右⾛,插⼊值⽐当前结点小往左⾛,找到空位置,插⼊新结点。
3. 如果⽀持插⼊相等的值,插⼊值跟当前结点相等的值可以往右⾛,也可以往左⾛,找到空位置,插⼊新结点。(要注意的是要保持逻辑⼀致性,插⼊相等的值不要⼀会往右⾛,⼀会往左⾛)

int a[] = {8, 3, 1, 10, 6, 4, 7, 14, 13};

4. 叉搜索树的查找  

1. 从根开始比较,查找x,x比根的值⼤则往右边⾛查找,x比根值小则往左边⾛查找。
2. 最多查找⾼度次,走到到空,还没找到,这个值不存在。
3. 如果不⽀持插⼊相等的值,找到x即可返回
4. 如果⽀持插⼊相等的值,意味着有多个x存在,⼀般要求查找中序的第⼀个x。如下图,查找3,要找到1的右孩⼦的那个3返回

5. ⼆叉搜索树的删除

⾸先查找元素是否在⼆叉搜索树中,如果不存在,则返回false。
如果查找元素存在则分以下四种情况分别处理:(假设要删除的结点为N)
1. 要删除结点N左右孩子均为空
2. 要删除的结点N左孩子位空,右孩子结点不为空
3. 要删除的结点N右孩子位空,左孩子结点不为空
4. 要删除的结点N左右孩子结点均不为空
对应以上四种情况的解决方案:
1. 把N结点的⽗亲对应孩子指针指向空,直接删除N结点(情况1可以当成2或者3处理,效果是⼀样的)
2. 把N结点的⽗亲对应孩子指针指向N的右孩⼦,直接删除N结点
3. 把N结点的⽗亲对应孩子指针指向N的左孩⼦,直接删除N结点
4. 法直接删除N结点,因为N的两个孩⼦⽆处安放,只能⽤替换法删除。找N左⼦树的值最⼤结点R(最右结点)或者N右⼦树的值最小结点R(最左结点)替代N,因为这两个结点中任意⼀个,放到N的位置,都满⾜⼆叉搜索树的规则。替代N的意思就是N和R的两个结点的值交换,转⽽变成删除R结点,R结点符合情况2或情况3,可以直接删除。

 6. 叉搜索树的实现代码

template<class K>
struct BSTNode
{
    K _key;
    BSTNode<K>* _left;
    BSTNode<K>* _right;
    BSTNode(const K& key)
    :_key(key)
    , _left(nullptr)
    , _right(nullptr)
    {}
};

// Binary Search Tree
template<class K>
class BSTree
{
    typedef BSTNode<K> Node;
public:
    bool Insert(const K& key)
    {
        if (_root == nullptr)
        {
            _root = new Node(key);
            return true;
        }
        
    Node* parent = nullptr;
    Node* cur = _root;
    while (cur)
    {
        if (cur->_key < key)
        {
            parent = cur;
            cur = cur->_right;
        }
        else if (cur->_key > key)
        {
            parent = cur;
            cur = cur->_left;
        }
        else
        {
            return false;
        }
    }
    cur = new Node(key);
    if (parent->_key < key)
    {
        parent->_right = cur;
    }
    else
    {
        parent->_left = cur;
    }
    return true;
}

bool Find(const K& key)
{
    Node* cur = _root;
    while (cur)
    {
        if (cur->_key < key)
        {
            cur = cur->_right;
        }
        else if (cur->_key > key)
        {
            cur = cur->_left;
        }
        else
        {
            return true;
        }
    }
    return false;
}

bool Erase(const K& key)
{
    Node* parent = nullptr;
    Node* cur = _root;
    while (cur)
    {
        if (cur->_key < key)
        {
            parent = cur;
            cur = cur->_right;
        }
        else if (cur->_key > key)
        {
            parent = cur;
            cur = cur->_left;
        }
        else
        {
            // 0-1个孩⼦的情况
            // 删除情况1 2 3均可以直接删除,改变⽗亲对应孩⼦指针
            指向即可
            if (cur->_left == nullptr)
            {
                if (parent == nullptr)
                {
                    _root = cur->_right;
                }
                else
                {
                    if (parent->_left == cur)
                        parent->_left = cur->_right;
                    else
                        parent->_right = cur->_right;
                }
                delete cur;
                return true;
            }
            else if (cur->_right == nullptr)
            {
                if (parent == nullptr)
                {
                    _root = cur->_left;
                }
                else
                {
                    if (parent->_left == cur)
                        parent->_left = cur->_left;
                    else
                        parent->_right = cur->_left;
                }

                delete cur;
                return true;
            }
            else
            {
                // 2个孩⼦的情况
                // 删除情况4,替换法删除
                // 假设这⾥我们取右⼦树的最⼩结点作为替代结点去删除
                // 这⾥尤其要注意右⼦树的根就是最⼩情况的情况的处理,对应课件图中删除8的情况
                // ⼀定要把cur给rightMinP,否会报错。
                Node* rightMinP = cur;
                Node* rightMin = cur->_right;
                while (rightMin->_left)
                {
                    rightMinP = rightMin;
                    rightMin = rightMin->_left;
                }
                cur->_key = rightMin->_key;
                if (rightMinP->_left == rightMin)
                    rightMinP->_left = rightMin->_right;
                else
                    rightMinP->_right = rightMin->_right;
                delete rightMin;
                return true;
            }
        }
    }
    return false;
}

    void InOrder()
    {
        _InOrder(_root);
        cout << endl;
    }

private:
    void _InOrder(Node* root)
    {
        if (root == nullptr)
        {
            return;
        }
        _InOrder(root->_left);
        cout << root->_key << " ";
        _InOrder(root->_right);
    }
private:
    Node* _root = nullptr;
};

7. 叉搜索树key和key/value使用场景

7.1 key搜索场景:

只有key作为关键码,结构中只需要存储key即可,关键码即为需要搜索到的值,搜索场景只需要判断key在不在。key的搜索场景实现的⼆叉树搜索树⽀持增删查,但是不⽀持修改,修改key破坏搜索树结构了。
场景1:小区无人值守车库,小区车库买了⻋位的业主⻋才能进小区,那么物业会把买了车位的业主的车牌号录入后台系统,⻋辆进⼊时扫描⻋牌在不在系统中,在则抬杆,不在则提示非本小区⻋辆,无法进⼊。
场景2:检查⼀篇英文文章单词拼写是否正确,将词库中所有单词放入⼆叉搜索树,读取⽂章中的单词,查找是否在⼆叉搜索树中,不在则波浪线标红提示。

7.2 key/value搜索场景:

每⼀个关键码key,都有与之对应的值value,value可以任意类型对象。树的结构中(结点)除了需要存储key还要存储对应的value,增/删/查还是以key为关键字⾛⼆叉搜索树的规则进⾏⽐较,可以快速查找到key对应的value。key/value的搜索场景实现的⼆叉树搜索树⽀持修改,但是不⽀持修改key,修改key破坏搜索树结构了,可以修改value。
场景1:简单中英互译字典,树的结构中(结点)存储key(英⽂)和vlaue(中⽂),搜索时输⼊英⽂,则同时 查找到了英⽂对应的中⽂。
场景2:商场⽆⼈值守⻋库,⼊⼝进场时扫描⻋牌,记录⻋牌和⼊场时间,出⼝离场时,扫描⻋牌,查找⼊场时间,⽤当前时间-⼊场时间计算出停⻋时⻓,计算出停⻋费⽤,缴费后抬杆,⻋辆离场。
场景3:统计⼀篇⽂章中单词出现的次数,读取⼀个单词,查找单词是否存在,不存在这个说明第⼀次出现,(单词,1),单词存在,则++单词对应的次数。

7.3 key/value⼆叉搜索树代码实现

template<class K, class V>
struct BSTNode
{
    // pair<K, V> _kv;
    K _key;
    V _value;
    BSTNode<K, V>* _left;
    BSTNode<K, V>* _right;
    BSTNode(const K& key, const V& value)
    :_key(key)
    , _value(value)
    , _left(nullptr)
    , _right(nullptr)
    {}
};

template<class K, class V>
class BSTree
{
    typedef BSTNode<K, V> Node;
    public:
    BSTree() = default;
    BSTree(const BSTree<K, V>& t)
    {
        _root = Copy(t._root);
    }
    BSTree<K, V>& operator=(BSTree<K, V> t)
    {
        swap(_root, t._root);
        return *this;
    }
    ~BSTree()
    {
        Destroy(_root);
        _root = nullptr;
    }
    bool Insert(const K& key, const V& value)
    {
        if (_root == nullptr)
        {
            _root = new Node(key, value);
            return true;
        }
        Node* parent = nullptr;
        Node* cur = _root;
        while (cur)
        {
            if (cur->_key < key)
            {
                parent = cur;
                cur = cur->_right;
            }
            else if (cur->_key > key)
            {
                parent = cur;
                cur = cur->_left;
            }
            else
            {
                return false;
            }
        }
        cur = new Node(key, value);
        if (parent->_key < key)
        {
            parent->_right = cur;
        }
        else
        {
            parent->_left = cur;
        }
        return true;
    }

    Node* Find(const K& key)
    {
        Node* cur = _root;
        while (cur)
        {
            if (cur->_key < key)
            {
                cur = cur->_right;
            }
            else if (cur->_key > key)
            {
                cur = cur->_left;
            }
            else
            {
                return cur;
            }
        }
        return nullptr;
    }

    bool Erase(const K& key)
    {
        Node* parent = nullptr;
        Node* cur = _root;
        while (cur)
        {
            if (cur->_key < key)
            {
                parent = cur;
                cur = cur->_right;
            }
            else if (cur->_key > key)
            {
                parent = cur;
                cur = cur->_left;
            }
            else
            {
                if (cur->_left == nullptr)
                {
                    if (parent == nullptr)
                    {
                        _root = cur->_right;
                    }
                else
                {
                    if (parent->_left == cur)
                        parent->_left = cur->_right;
                    else
                        parent->_right = cur->_right;
                }
                delete cur;
                return true;
            }
            else if (cur->_right == nullptr)
            {
                if (parent == nullptr)
                {
                    _root = cur->_left;
                }
                else
                {
                    if (parent->_left == cur)
                        parent->_left = cur->_left;
                    else
                        parent->_right = cur->_left;
                }
                delete cur;
                return true;
            }
            else
            {
                Node* rightMinP = cur;
                Node* rightMin = cur->_right;
                while (rightMin->_left)
                {
                    rightMinP = rightMin;
                    rightMin = rightMin->_left;
                }
                cur->_key = rightMin->_key;
                if (rightMinP->_left == rightMin)
                    rightMinP->_left = rightMin->_right;
                else
                    rightMinP->_right = rightMin->_right;
                delete rightMin;
                return true;
            }
        }
    }
    return false;
}

    void InOrder()
    {
        _InOrder(_root);
        cout << endl;
    }
private:
    void _InOrder(Node* root)
    {
        if (root == nullptr)
        {
            return;
        }
        _InOrder(root->_left);
        cout << root->_key << ":" << root->_value << endl;
        _InOrder(root->_right);
    }
    void Destroy(Node* root)
    {
        if (root == nullptr)
            return;
        Destroy(root->_left);
        Destroy(root->_right);
        delete root;
    }
    Node* Copy(Node* root)
    {
        if (root == nullptr)
            return nullptr;
        Node* newRoot = new Node(root->_key, root->_value);
        newRoot->_left = Copy(root->_left);
        newRoot->_right = Copy(root->_right);
        return newRoot;
    }
private:
    Node* _root = nullptr;
};

int main()
{
    BSTree<string, string> dict;
    //BSTree<string, string> copy = dict;
    dict.Insert("left", "左边");
    dict.Insert("right", "右边");
    dict.Insert("insert", "插⼊");
    dict.Insert("string", "字符串");
    string str;
    while (cin>>str)
    {
        auto ret = dict.Find(str);
        if (ret)
        {
             cout << "->" << ret->_value << endl;
        }
        else
        {
            cout << "⽆此单词,请重新输⼊" << endl;
        }
    }
    return 0;
}

int main()
{
    string arr[] = { "苹果", "西⽠", "苹果", "西⽠", "苹果", "苹果", "西⽠","苹果", "⾹蕉", "苹果", "⾹蕉" };
    BSTree<string, int> countTree;
    for (const auto& str : arr)
    {
        // 先查找⽔果在不在搜索树中
        // 1、不在,说明⽔果第⼀次出现,则插⼊<⽔果, 1>
        // 2、在,则查找到的结点中⽔果对应的次数++
        //BSTreeNode<string, int>* ret = countTree.Find(str);
        auto ret = countTree.Find(str);
        if (ret == NULL)
        {
            countTree.Insert(str, 1);
        }
        else
        {
            ret->_value++;
        }
    }
    countTree.InOrder();
    return 0;
}

这篇文章介绍了二叉搜索树的相关知识!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值