通过jps命令,可以看到如下进程名,请解释一下它们各自是哪个命令产生的,有什么作用?
Worker
NodeManager
DataNode
Master
NameNode
JobHistoryServer
HistoryServer
这些进程名对应的启动命令及其作用:
1. Worker
- **产生命令**:
在Spark Standalone模式下,通过执行 `$SPARK_HOME/sbin/start - worker.sh spark://<master - host>:<master - port>` 命令启动,或者在启动整个集群时使用 `$SPARK_HOME/sbin/start - all.sh` 也会启动该进程。
- **作用**:
是Spark Standalone集群中的工作节点进程。它负责管理所在节点上的计算资源(如CPU、内存),接收来自Master的任务分配,为应用程序分配执行器(Executor),并监控执行器的运行状态。
2. NodeManager
- **产生命令**:
在Hadoop YARN集群中,使用 `$HADOOP_HOME/sbin/yarn - daemon.sh start nodemanager` 命令启动,或者使用 `$HADOOP_HOME/sbin/start - yarn.sh` 启动整个YARN服务时会启动该进程。
- **作用**:
是YARN集群中的节点管理器,负责管理单个节点上的资源(如CPU、内存、磁盘等),接收来自ResourceManager的资源分配请求,启动和监控容器(Container)的运行,向ResourceManager汇报节点的资源使用情况和容器的运行状态。
3. DataNode
- **产生命令**:
在Hadoop HDFS集群中,使用 `$HADOOP_HOME/sbin/hdfs --daemon start datanode` 命令启动,或者使用 `$HADOOP_HOME/sbin/start - dfs.sh` 启动整个HDFS服务时会启动该进程。
- **作用**:
是HDFS集群中的数据存储节点,负责实际的数据存储和读写操作。它将数据以块(Block)的形式存储在本地磁盘上,并根据NameNode的指令进行数据块的创建、删除和复制等操作。
4. Master
- **产生命令**:
在Spark Standalone模式下,通过执行 `$SPARK_HOME/sbin/start - master.sh` 命令启动,或者使用 `$SPARK_HOME/sbin/start - all.sh` 启动整个集群时会启动该进程。
- **作用**:
是Spark Standalone集群的主节点进程,负责管理整个集群的资源和任务调度。它接收来自客户端的应用程序提交请求,为应用程序分配资源,将任务分发给Worker节点,并监控Worker节点和应用程序的运行状态。
5. NameNode
- **产生命令**:
在Hadoop HDFS集群中,使用 `$HADOOP_HOME/sbin/hdfs --daemon start namenode` 命令启动,或者使用 `$HADOOP_HOME/sbin/start - dfs.sh` 启动整个HDFS服务时会启动该进程。
- **作用**:
是HDFS集群的主节点,负责管理文件系统的命名空间(如文件和目录的元数据),记录数据块与DataNode的映射关系,处理客户端的文件系统操作请求(如文件的创建、删除、重命名等),并协调DataNode之间的数据块复制和均衡。
6. JobHistoryServer
- **产生命令**:
在Hadoop MapReduce中,使用 `$HADOOP_HOME/sbin/mr - jobhistory - daemon.sh start historyserver` 命令启动。
- **作用**:
用于存储和展示MapReduce作业的历史信息,包括作业的执行时间、输入输出数据量、任务执行情况等。通过访问JobHistoryServer的Web界面,可以查看作业的详细执行日志,方便进行作业的调试和性能分析。
7. HistoryServer
- **产生命令**:
在Spark中,使用 `$SPARK_HOME/sbin/start - history - server.sh` 命令启动。
- **作用**:
用于存储和展示Spark应用程序的历史信息,包括应用程序的执行时间、任务执行情况、资源使用情况等。通过访问HistoryServer的Web界面,可以查看Spark应用程序的详细执行日志,方便进行应用程序的调试和性能优化。