贪心算法day30|452. 用最少数量的箭引爆气球、435. 无重叠区间、763. 划分字母区间
452. 用最少数量的箭引爆气球
有一些球形气球贴在一堵用 XY 平面表示的墙面上。墙面上的气球记录在整数数组 points
,其中points[i] = [xstart, xend]
表示水平直径在 xstart
和 xend
之间的气球。你不知道气球的确切 y 坐标。
一支弓箭可以沿着 x 轴从不同点 完全垂直 地射出。在坐标 x
处射出一支箭,若有一个气球的直径的开始和结束坐标为 x``start
,x``end
, 且满足 xstart ≤ x ≤ x``end
,则该气球会被 引爆 。可以射出的弓箭的数量 没有限制 。 弓箭一旦被射出之后,可以无限地前进。
给你一个数组 points
,返回引爆所有气球所必须射出的 最小 弓箭数 。
示例 1:
输入:points = [[10,16],[2,8],[1,6],[7,12]]
输出:2
解释:气球可以用2支箭来爆破:
-在x = 6处射出箭,击破气球[2,8]和[1,6]。
-在x = 11处发射箭,击破气球[10,16]和[7,12]。
示例 2:
输入:points = [[1,2],[3,4],[5,6],[7,8]]
输出:4
解释:每个气球需要射出一支箭,总共需要4支箭。
示例 3:
输入:points = [[1,2],[2,3],[3,4],[4,5]]
输出:2
解释:气球可以用2支箭来爆破:
- 在x = 2处发射箭,击破气球[1,2]和[2,3]。
- 在x = 4处射出箭,击破气球[3,4]和[4,5]。
提示:
1 <= points.length <= 105
points[i].length == 2
-231 <= xstart < xend <= 231 - 1
一开始写的类似于暴力解法,但是处理补不了2个以上区间重叠的情况。看了卡哥的思路之后,写出的代码如下:
class Solution {
public:
static bool cmp(vector<int>&a,vector<int>&b)
{
return a[0]<b[0];
}
int findMinArrowShots(vector<vector<int>>& points) {
if(points.size()==0)
return 0;
sort(points.begin(),points.end(),cmp);
int result=1;
for(int i=1;i<points.size();i++)
{
if(points[i-1][1]<points[i][0])
result++;
else
points[i][1]=min(points[i][1],points[i-1][1]);
}
return result;
}
};
核心思路:重叠,result不变;不重叠,result加一
难点:
-
排序(O(nlogn)),首先按照左边界递增排序。这招化腐朽为神奇,非常巧妙,但是很难想到。
-
对于多重叠的处理:对于重叠的情况,重新界定最小右边界,即:
points[i][1]=min(points[i][1],points[i-1][1]);
这在本次循环里面不起作用,而是在下一次循环里起作用,这是一种**整体性思维,**高级的迭代
- 分两种情况,如果前一个不是重叠区间,则直接比;如果前一个是重叠区间,看起来是也是直接比,但实际上是和重叠区间整体的最小右区间比
易错点:
- **初始时result=1;**在初始的时候默认射一支箭,然后后面重叠了就不用变了,不重叠才需要继续加一,这是按照我们整体的思维来的
- 当初始result=1时,必须剪掉个数为0的情况,因为result=1在这种情况下不满足,所以需要单独考虑,即:
if(points.size()==0)
return 0;
435. 无重叠区间
给定一个区间的集合 intervals
,其中 intervals[i] = [starti, endi]
。返回 需要移除区间的最小数量,使剩余区间互不重叠 。
示例 1:
输入: intervals = [[1,2],[2,3],[3,4],[1,3]]
输出: 1
解释: 移除 [1,3] 后,剩下的区间没有重叠。
示例 2:
输入: intervals = [ [1,2], [1,2], [1,2] ]
输出: 2
解释: 你需要移除两个 [1,2] 来使剩下的区间没有重叠。
示例 3:
输入: intervals = [ [1,2], [2,3] ]
输出: 0
解释: 你不需要移除任何区间,因为它们已经是无重叠的了。
提示:
1 <= intervals.length <= 105
intervals[i].length == 2
-5 * 104 <= starti < endi <= 5 * 104
class Solution {
public:
static bool cmp(vector<int>&a,vector<int>&b)
{
if(a[0]==b[0])
return a[1]<b[1];
return a[0]<b[0];
}
int eraseOverlapIntervals(vector<vector<int>>& intervals) {
if(intervals.size()==0)
return 0;
int result=0;
sort(intervals.begin(),intervals.end(),cmp);
for(int i=1;i<intervals.size();i++)
{
if(intervals[i][0]<intervals[i-1][1])
{
result++;
intervals[i][1]=min(intervals[i][1],intervals[i-1][1]);
}
}
return result;
}
};
这题我一开始时思考的是当出现重叠时,去除哪一个才能达到局部最优?其实这种想法是错的,当我们排序之后,其实已经把这些问题梳理清楚了,此时我们只需要确定有几个重叠区间就行了,不用再考虑去除哪个才是最优。因为这些区间的互相影响关系已经通过排序很清晰地给出了。
763. 划分字母区间
给你一个字符串 s
。我们要把这个字符串划分为尽可能多的片段,同一字母最多出现在一个片段中。
注意,划分结果需要满足:将所有划分结果按顺序连接,得到的字符串仍然是 s
。
返回一个表示每个字符串片段的长度的列表。
示例 1:
输入:s = "ababcbacadefegdehijhklij"
输出:[9,7,8]
解释:
划分结果为 "ababcbaca"、"defegde"、"hijhklij" 。
每个字母最多出现在一个片段中。
像 "ababcbacadefegde", "hijhklij" 这样的划分是错误的,因为划分的片段数较少。
示例 2:
输入:s = "eccbbbbdec"
输出:[10]
提示:
1 <= s.length <= 500
s
仅由小写英文字母组成
class Solution {
public:
vector<int> partitionLabels(string s) {
int hash[26];
vector<int> result;
for (int i = 0; i < s.size(); i++) {
hash[s[i] - 'a'] = i;
}
int left = 0, right = 0;
for (int i = 0; i < s.size(); i++) {
right = max(right, hash[s[i] - 'a']);
if (i == right) {
result.push_back(right - left + 1);
left = right + 1;
}
}
return result;
}
};
核心思路:记录每个字母出现的最大下标,然后根据最大下标所划分的区间,利用双指针来获取。
每个部分都是难点:
- 记录每个字母出现的最大下标
int hash[26];
for (int i = 0; i < s.size(); i++) {
hash[s[i] - 'a'] = i;
有点类似于字母的阿斯克码的换算。
- 双指针左闭右闭限定空间,取最大下标处为right;当i==right时这个区间截止。
right = max(right, hash[s[i] - 'a']);
if (i == right) {
result.push_back(right - left + 1);
left = right + 1;
}