大数据分析与数据挖掘(面试题二,全选对一半)

二、多项选择题
1、数据再利用的意义在于?(ABC )(共 2 分)
A、挖掘数据的潜在价值
B、实现数据重组的创新价值
C、利用数据可扩展性拓宽业务领域
D、优化存储设备,降低设备成本 4
2、利用 Python 进行数据合并的方式有?( ABCDE)(共 2 分)
A、append
B、concat
C、join
D、merge
E、combine
3、下面属于数据集的一般特性的有哪些?(BCD )(共 2 分)
A、连续性
B、维度
C、稀疏性
D、分辨率
E、相异性
4、相比于政府 1.0,政府 2.0 具有哪些特征?( BD)(共 2 分)
A、侧重于“以政府为中心"
B、侧重于“以公众为中心”
C、政府扮演单一和主导性的角色
D、吸纳多元主体的参与
5、下面关于数据开放的陈述哪些是正确的?( ABD)(共 2 分)
A、要提供应用程序开放接口
B、允许公众免费查询、下载
C、要提供全部的原始数据
D、允许公民要求数据开放数据
6、联机分析处理包括哪些基本分析功能?( BCD)(共 2 分)
A、聚类
B、切片
C、转轴
D、切块
7、Web 内容挖掘实现技术?( ABCD)(共 2 分)
A、文本总结
B、文本分类
C、文本聚类
D、关联规则
8、分类的过程包括哪些?( ABCD)(共 2 分)
A、获取数据
B、预处理
C、分类器设计
D、分类决策
9、大数据带来的挑战有哪些?( ABCD)(共 2 分)
A、会导致数据盲点
B、危及个人隐私
C、造成群体歧视
D、产生庞大能耗
10、要消除信息孤岛,需要从以下哪几个方面着手?( ABCD)(共 2 分)
A、进行纵向信息系统整合
B、进行水平的电子政务信息系统整合
C、改变内部管理观念和态度
D、建立跨系统、跨平台的政府综合信息处理平台
11、方法的评价准则有?( ABC)(共 2 分)
A、混淆矩阵
B、准确率
C、召回率
D、效率
12、模型评估方法有?( BCD)(共 2 分)
A、零点核对方式
B、交叉验证法 C、留出法(分层采样)
D、自助法(放回/不放回)
E、直接输入核对方式
13、多元线性回归中的变量选择方法有?(ABC )(共 2 分)
A、前进法
B、后退法
C、逐步回归法
D、单一法
14、数据预处理方法主要有?( ABCD)(共 2 分)
A、数据清洗
B、数据集成
C、数据变换
D、数据归约
15、以下哪些属于关联规则分析的应用?( ABCDE)(共 2 分)
A、购物篮数据分析
B、关联销售
C、促销分析
D、目录编排
E、web 日志分析
16、数据挖掘的主要功能包括概念描述、趋势分析、孤立点分析及哪些方面?( ABCD)(共 2 分)
A、挖掘频繁模式
B、分类和预测
C、聚类分析
D、偏差分析
17、对聚类分析具有很强影响的数据特性是哪些?( ABCD)(共 2 分)
A、高维性
B、规模
C、稀疏性
D、噪声和离群点
18、支持向量机中常用的核函数有哪些?( ABC)(共 2 分)
A、多项式核函数
B、径向基核函数
C、S 型核函数
D、ROLAP
19、贝叶斯信念网络(BBN)有如下哪些特点?( AB)(共 2 分)
A、构造网络费时费力
B、对模型的过分问题非常鲁棒
C、贝叶斯网络不适合处理不完整的数据
D、网络结构确定后,添加变量相当麻烦 5
20、大数据处理流程可以概括以下哪几步?( ABCD)(共 2 分)
A、数据分析与挖掘
B、数据采集
C、数据储存
D、结果展示
数据挖掘分析面试题 数据挖掘分析面试题全文共16页,当前为第1页。数据挖掘分析面试题全文共16页,当前为第1页。2011Alibaba数据分析师(实习)试题解析 数据挖掘分析面试题全文共16页,当前为第1页。 数据挖掘分析面试题全文共16页,当前为第1页。 一、异常值是指什么?请列举1种识别连续型变量异常值的方法? 异常值(Outlier) 是指样本中的个别值,其数值明显偏离所属样本的其余观测值。在数理统计里一般是指一组观测值中平均值的偏差超过两倍标准差的测定值。 Grubbs' test(是以Frank E.Grubbs命名的),又叫maximumnormed residual test,是一种用于单变量数据集异常值识别的统计检测,它假定数据集来自正态分布的总体。 未知总体标准差σ,在五种检验法中,优劣次序为:t检验法、格拉布斯检验法、峰度检验法、狄克逊检验法、偏度检验法。 、什么是聚类分析?聚类算法有哪几种?请选择一种详细描述其计算原理和步骤。 聚类分析(clusteranalysis)是一组将研究对象分为相对同质的群组(clusters)的统计分析技术。聚类分析也叫分类分析(classification analysis)或数值分类(numerical taxonomy)。聚类分类的不同在于,聚类所要求划分的类是未知的。 聚类分析计算方法主要有: 层次的方法(hierarchical method)、划分方法(partitioning method)、基于密度的方法(density-based method)、基于网格的方法(grid-based method)、基于模型的方法(model-based method)等。其中,前两种算法是利用统计学定义的距离进行度量。 k-means 算法的工作过程说明如下:首先从n个数据对象任意选择 k 个对象作为初始聚类中心;而对于所剩下其它对象,则根据它们这些聚类中心的相似度(距离),分别将它们分配给其最相似的(聚类中心所代表的)聚类;然后再计算每个所获新聚类的聚类中心(该聚类中所有对象的均值);不断重复这一过程直到标准测度函数开始收敛为止。一般都采用均方差作为标准测度函数. k个聚类具有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。 其流程如下: (1)从 n个数据对象任意选择 k 个对象作为初始聚类中心;      (2)根据每个聚类对象的均值(中心对象),计算每个对象这些中心对象的距离;并根据最小距离重新对相应对象进行划分;   (3)重新计算每个(有变化)聚类的均值(中心对象); (4)循环(2)、(3)直到每个聚类不再发生变化为止(标准测量函数收敛)。 优 点:本算法确定的K 个划分到达平方误差最小。当聚类是密集的,且类类之间区别明显时,效果较好。对于处理大数据集,这个算法是相对可伸缩和高效的,计算的复杂度为 O(NKt),其中N是数据对象的数目,t是迭代的次数。一般来说,K<<N,t<<N 。 缺点:1. K 是事先给定的,但非常难以选定;2. 初始聚类中心的选择对聚类结果有较大的影响。 三、根据要求写出SQL 表A结构如下: Member_ID (用户的ID,字符型) Log_time (用户访问页面时间,日期型(只有一天的数据)) URL (访问的页面地址,字符型) 要求:提取出每个用户访问的第一个URL(按时间最早),形成一个新表(新表名为B,表结构和表A一致) create table B as select Member_ID,min(Log_time), URL from A group by Member_ID ; 四、销售数据分析 以下是一家B2C电子商务网站的一周销售数据,该网站主要用户群是办公室女性,销售额主数据挖掘分析面试题全文共16页,当前为第2页。数据挖掘分析面试题全文共16页,当前为第2页。要集中在5种产品上,如果你是这家公司的分析师, a) 从数据中,你看到了什么问题?你觉得背后的原因是什么? b) 如果你的老板要求你提出一个运营改进计划,你会怎么做? 表如下:一组每天某网站的销售数据 数据挖掘分析面试题全文共16页,当前为第2页。 数据挖掘分析面试题全文共16页,当前为第2页。 a) 从这一周的数据可以看出,周末的销售额明显偏低。这其中的原因,可以从两个角度来看:站在消费者的角度,周末可能不用上班,因而也没有购买该产品的欲望;站在产品的角度来看,该产品不能在周末的时候引起消费者足够的注意力。 b) 针对该问题背后的两方面原因,我的运营改进计划也分两方面:一是,针对消费者周末没有购买欲望的心理,进行引导提醒消费者周末就应该准备好该产品;是,通过该产品的一些类似于打折促销等活动来提升该产品在周末的人气和购买力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值