一、选择题(每小题3分,共30分)
1. 下列级数中,条件收敛的是( )

2. 函数
在点(0,0)处( )
A. 连续且可偏导
B. 连续但不可偏导
C. 不连续但可偏导
D. 不连续且不可偏导
解析:沿不同路径(如x轴和y轴)计算极限结果不同,说明极限不存在,故函数在(0,0)处不连续。同时,计算偏导数也不存在。答案是D。
3. 若向量a=(1,2,3),b=(4,5,6),则a×b=( )
A. (−3,6,−3)
B. (3,−6,3)
C. (12,−6,3)
D. (3,6,−3)

4. 函数在点(1,1)处的全微分是( )

5. 若L是从点(0,0)到点(1,1)的直线段,则曲线积分

二、填空题(每小题4分,共20分)

三、计算题(每小题10分,共30分)
1. 判断级数的收敛性。

2. 求函数的极值。(只展示部分过程)

3. 计算三重积分 ,其中 V 是由球面所围成的区域。

四、证明题(每小题10分,共20分)
1. 证明:若函数 f(x) 在 [a,b] 上连续,则它在 [a,b] 上一致连续。

2. 证明:若函数 f(x) 在 [a,b] 上可导,且 f′(x) 在 [a,b] 上有界,则 f(x) 在 [a,b] 上一致连续。

五、应用题(10分)
1. 一质点在 xy-平面上运动,其位置由参数方程给出,其中 t 是时间。求质点在 t=1 时的速度向量和加速度向量。
