
人工智能
文章平均质量分 91
培风图南以星河揽胜
穷源溯流,昂霄耸壑;
至道嘉猷,静水流深。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Python实习模拟面试之大模型幻觉治理:基于微调技术的垂直领域知识对齐实战
通过这场模拟面试,我们系统掌握了垂直领域大模型对齐阶段关键动作问题定位识别幻觉场景与风险等级技术选型微调 vs RAG vs Prompting数据构建高质量、带证据、含对抗样本模型微调PEFT(LoRA)实现高效训练评估验证人工+自动,多维度量化持续迭代增量更新,版本管理作为Python实习生,若能主导或深度参与此类项目,不仅展现了你在大模型应用、深度学习、数据工程的综合能力,更体现了你对AI可靠性与安全性的深刻理解,这正是企业最看重的素质。原创 2025-09-22 14:36:55 · 638 阅读 · 0 评论 -
Python实习模拟面试之智能多模态文生图:基于Stable Diffusion与ControlNet的生成式AI实战
技术作用实习生价值基础生成能力理解扩散模型原理ControlNet结构控制掌握条件生成语义引导提升生成质量LoRA风格定制实现个性化Hi-Res Fix高清输出满足生产需求作为Python实习生,参与此类项目不仅能掌握前沿AI技术,更能培养多模态系统设计能力,为进入AIGC领域打下坚实基础。原创 2025-09-22 14:33:03 · 754 阅读 · 0 评论 -
Python实习模拟面试之电商评论智能分类:从文本预处理到BERT+MLP混合模型的全流程实战
好的,面试官。情感极性:正面 / 负面 / 中性主题类别:物流、价格、质量、服务、包装紧急程度:一般、紧急(如“商品破损”、“未收到货”)技术路线采用“BERT + MLP”混合架构原始评论 → 文本预处理 → BERT编码 → 特征提取 → MLP分类 → 多标签输出数据采集:爬取平台公开评论数据,共12万条。数据清洗与标注:清洗噪声,人工标注多标签。模型训练:使用预训练BERT模型提取语义特征,接MLP进行多标签分类。模型评估与部署:在测试集上评估F1值,并封装为API服务。原创 2025-09-22 14:29:08 · 549 阅读 · 0 评论 -
Python实习模拟面试之物流智能问答系统:基于RAG与LangChain的企业级大模型应用开发
好的,面试官。我作为项目核心开发,负责从技术选型、模块设计到部署落地的全流程。系统的核心目标是:让大模型能够准确回答基于公司内部文档的物流咨询,避免“幻觉”和过时信息。我们采用用户提问↓↓[Retriever] ← [向量数据库 Chroma]↑↑原始文档(PDF/Word/Excel/数据库)知识摄入:将公司内部的《运费标准》、《服务条款》、《常见问题》等文档解析并切分。向量化存储:使用Embedding模型生成向量,存入Chroma向量数据库。检索增强。原创 2025-09-22 14:25:23 · 751 阅读 · 0 评论 -
程序员模拟面试之AI大模型开发:从Prompt到微调的全栈实战
好的,面试官。什么是Prompt Engineering?Prompt Engineering(提示词工程)是设计和优化输入给大语言模型的文本指令(Prompt),以引导模型生成更准确、更相关、更符合预期的输出的技术。它是与大模型交互的“编程语言”。一个精心设计的Prompt可以显著提升模型的表现,而一个模糊或错误的Prompt则可能导致“幻觉”(生成虚假信息)或无关输出。核心技巧与最佳实践:清晰明确的任务定义(Clear Instruction):“写点东西。原创 2025-08-14 11:37:23 · 818 阅读 · 0 评论 -
Trae 2.0 深度体验:AI编程工具的语音交互革新
随着人工智能技术的持续突破,开发者工具正经历从「效率辅助」到「流程重构」的范式转变。字节跳动推出的AI原生集成开发环境(IDE)Trae 2.0,通过语音交互与上下文工程的深度融合,重新定义了人机协作的开发模式。本文将从技术架构、功能解析、实战案例等维度,全面揭示Trae 2.0如何通过语音交互革新编程体验。中文优化:支持中英文混合指令,语义理解准确率领先同类产品30%多模态协同:语音输入与设计图上传无缝衔接,原型开发效率提升200%低门槛交互:非技术人员可通过语音快速生成基础功能模块。原创 2025-07-24 14:21:19 · 1168 阅读 · 0 评论 -
Java实习生探索飞书:从零开始的实习体验与技术成长
作为一名计算机专业的学生,我一直对大厂实习充满向往。而飞书作为字节跳动旗下的企业协作平台,近年来在技术圈中热度持续上升,并逐渐成为部分企业的主流办公软件。随着远程工作和数字化转型的需求增加,越来越多的企业开始寻求高效、灵活且易于集成的工作空间解决方案。飞书以其强大的功能集(包括即时通讯、文档协作、项目管理、日历同步等)以及良好的用户体验,成为了许多追求效率和创新的企业首选。特别值得一提的是,飞书在AI技术领域的布局尤为亮眼。原创 2025-07-22 20:42:00 · 599 阅读 · 0 评论 -
Java 实习需要达到的高度:从基础到 AI 融合,打造高竞争力实习生
能力说明JavaSE 基础掌握面向对象、集合、多线程、IO 等核心内容Web 全栈开发熟悉前后端技术栈,能独立完成 Web 项目单体项目开发能独立开发并部署一个完整的项目Spring AI(加分项)掌握 RAG、Prompt 工程等 AI 技术,并应用于项目中📌建议学习路径学习 JavaSE → 2. 学习 Web 技术 → 3. 做一个完整项目 → 4. 加入 AI 功能 → 5. 写博客、做作品集📌推荐展示方式将项目代码托管到 GitHub / Gitee。原创 2025-07-22 20:23:52 · 1036 阅读 · 0 评论 -
Spring AI Alibaba:企业级 AI 应用开发框架
是一个基于 Spring AI 构建的 AI 应用开发框架,专为 Java 开发者设计,深度集成阿里云百炼平台,致力于简化 AI 应用的构建、部署与管理。该框架不仅支持基础的对话式 AI 应用(如 ChatBot),还提供强大的多智能体(Multi-agent)系统开发能力,适用于企业级复杂业务场景。项目定位:面向 Java 开发者的 AI 应用开发框架,融合 Spring 生态与百炼平台。主要功能多智能体系统(Multi-agent)工作流(Workflow)编排对话系统(ChatBot)原创 2025-07-21 13:34:01 · 2921 阅读 · 0 评论 -
快速上手:使用 Spring Boot 和 Spring AI 构建对话机器人
Bean.defaultSystem("你是一个名为 Celestial Visionary 的助手,隶属于培风图南微信公众号").build();功能说明ChatClient是 Spring AI 提供的核心组件,用于封装与模型的交互逻辑。可自定义助手角色描述,提升对话一致性。高级配置:.withMaxTokens(500) // 设置最大输出长度.withTemperature(0.7) // 控制输出多样性(0.0~1.0)原创 2025-07-19 10:02:27 · 1120 阅读 · 0 评论 -
Spring AI 保姆式入门介绍:Java 与 AI 的天作之合
Spring AI 凭借其与 Spring 生态的完美兼容性、丰富的功能模块和强大的扩展能力,正逐渐成为 Java 开发者构建 AI 应用的首选框架。从会话记忆到多模态处理,从提示词工程到 RAG 构建,Spring AI 提供了一站式解决方案,帮助开发者快速实现 AI 能力的落地。建议:如果你正在寻找一个稳定、可维护、易扩展的 AI 开发框架,Spring AI 是你的不二之选。而对于一些老旧项目或特定需求,LangChain4j 仍可作为过渡方案使用。原创 2025-07-19 08:19:00 · 762 阅读 · 0 评论 -
Spring AI 的未来展望:Java 生态如何拥抱人工智能?
控制反转(IoC)面向切面编程(AOP)简化企业级应用开发它通过模块化的设计,支持灵活组合不同功能模块,适用于各种规模的应用开发。Spring AI 正处于快速发展阶段,虽然目前仍面临一些技术和生态上的挑战,但其背后庞大的 Java 社群和企业用户基础,使其具备巨大的发展潜力。对于开发者而言,掌握 Spring 与 AI 的结合技能,不仅能够拓宽职业发展的边界,也将在未来 AI 驱动的企业变革中占据先机。如果你是一名 Java 开发者,现在正是了解并参与 Spring AI 最佳时机。原创 2025-07-09 18:08:55 · 989 阅读 · 0 评论 -
Java + AI 的智能金融项目开发文档
随着金融科技的快速发展,人工智能技术在金融领域的应用日益广泛。通过将Java强大的后端能力与AI 技术相结合,我们可以构建高效、安全、可扩展的智能金融系统,实现风险控制、智能推荐、自动交易、信用评估等功能。本项目旨在利用 Java 作为主要开发语言,结合机器学习(如 TensorFlow、Sklearn)、自然语言处理(NLP)和大数据分析技术,构建一个具备智能决策能力的金融平台。本项目融合了 Java 在企业级开发中的稳定性和 AI 在智能决策方面的强大能力,是一次对金融科技领域的深入探索。原创 2025-07-09 12:06:38 · 665 阅读 · 0 评论 -
Java + AI 的智能客服项目开发文档
本项目将 Java 的稳定性与 AI 的智能性结合,打造了一个高效、灵活、可扩展的智能客服系统。适用于电商、金融、政务等多个领域,具备良好的商业应用前景。欢迎关注后续更新,也欢迎在评论区交流您的想法!🌟。原创 2025-07-09 11:49:00 · 941 阅读 · 0 评论 -
Java + AI 智能NPC项目开发文档
随着人工智能技术的不断发展,传统游戏中的固定行为模式的NPC(非玩家角色)已经无法满足玩家对沉浸式体验的需求。为了提升游戏的智能化水平和交互性,本项目结合Java 编程语言和AI 技术,实现一个具备基础感知、决策与学习能力的智能NPC系统。该项目可广泛应用于 RPG、MMORPG、模拟类等游戏场景中,为游戏开发者提供一套可扩展、模块化的智能NPC解决方案。本项目将 Java 的工程优势与 AI 的智能能力相结合,打造了一个灵活、高效、可扩展的智能NPC系统。原创 2025-07-09 11:34:01 · 961 阅读 · 0 评论 -
Java + AI 的智能家居项目开发文档
随着物联网(IoT)和人工智能(AI)技术的快速发展,智能家居正逐步成为现代生活的重要组成部分。本项目旨在利用Java作为后端开发语言,并结合AI 技术(如语音识别、图像识别等),打造一个具备智能感知、自动化控制和用户交互能力的智能家居系统。本项目将 Java 的稳定性和生态优势与 AI 技术相结合,构建一套完整的智能家居系统。通过本项目的实践,不仅可以加深对 IoT 和 AI 应用的理解,还能为未来智能家居产品的研发提供参考。欢迎关注我的 CSDN 博客,后续将持续更新本项目开发进展与实战经验分享!原创 2025-07-09 11:16:16 · 703 阅读 · 0 评论 -
Java AI 应用开发:通过 System Prompt 优化 AI 响应行为
是预设给 AI 模型的一段文本指令,用于定义其行为边界、语气风格、知识范围等。它通常在每次对话开始前被加载,并影响后续所有回复。精准设计 System Prompt:明确角色、输出格式、行为规则。动态管理配置:通过模板引擎或配置文件适应不同场景。结合高级框架:利用 LangChain4j、Spring AI 提高开发效率。持续优化:根据用户反馈调整 Prompt,提升模型表现。通过 System Prompt 设定 AI 的行为边界和输出规范,是提升 AI 应用智能化水平的重要手段。原创 2025-07-08 11:09:49 · 994 阅读 · 0 评论 -
基于 Spring AI 实现普通对话与流式对话功能
近年来,大型语言模型(如 OpenAI 的 GPT 系列、Anthropic 的 Claude、阿里云的 Qwen 等)逐渐成为构建智能应用的重要工具。Spring AI 是 Spring 官方为开发者提供的一个轻量级 AI 集成框架,支持多种 LLM 提供商,帮助开发者快速构建 AI 对话服务。本文将以OpenAI API为例,演示如何使用 Spring Boot + Spring AI 构建普通对话接口和流式对话接口。你可以通过。原创 2025-07-08 10:43:51 · 870 阅读 · 0 评论 -
保姆级入门教学:Java AI 智能应用开发之 Prompt Engineering 设计高效提示词以优化模型输出
通过系统化的 Prompt Engineering 实践,我们可以显著提升与 AI 模型的协作效率。未来,随着 LangChain4j、Auto-CoT 等工具的成熟,以及 LLM 模型的持续进化,AI 辅助开发将进一步降低技术门槛,推动 Java 生态在智能应用领域的创新发展。立即实践:从下一个 Java AI 项目开始,运用本文介绍的提示词设计方法,体验模型输出质量的飞跃式提升!原创 2025-07-08 10:31:18 · 1099 阅读 · 0 评论 -
Java AI 智能应用开发之基于 OpenAI-SDK 实现大模型的对话与工具调用(Tool Calling)
Component@Tool(description = "获取指定时区的当前日期时间",description = "时区标识,例如 Asia/Shanghai",快速构建具备对话能力的大模型应用;安全调用外部服务工具并与模型交互;构建企业级智能应用架构;实现与现有 IT 系统无缝对接。原创 2025-07-08 09:52:11 · 1905 阅读 · 0 评论 -
Embabel框架怎么样?深入探讨JVM上的AI智能体开发
Embabel是由Spring框架创始人Rod Johnson领导开发的一个开源项目,目标是为JVM平台提供一套完整的工具链,用于构建具有自主决策能力的AI代理系统(Agentic Systems)。它结合了大型语言模型(LLMs)的能力与传统软件工程中的领域建模、模块化编程理念,从而实现“语言驱动+逻辑驱动”的混合式智能流程。原创 2025-07-06 16:29:35 · 896 阅读 · 0 评论 -
完整版 | 通用人工智能(AGI)与自动化技术的深度融合:下一次可能颠覆所有岗位的技术革命
当机器能够完成绝大多数人类工作时,“人”的价值将如何界定?这个问题的答案,将塑造我们的未来。我们可能走向“无用阶级”,也可能进化为“超人类”精英,或迎来“意义经济”的爆发。但无论结果如何,谨慎设计这场革命的规则至关重要。我们需要确保技术进步的同时,不会失去对未来的掌控,让人类在技术发展的浪潮中保持尊严与价值。“知其然,更要知其所以然。只有真正了解计算机是如何工作的,才能写出更高效、更稳定的程序。同样,只有理解AGI与自动化技术的本质,我们才能更好地与之共生,创造更美好的未来。原创 2025-07-03 17:32:26 · 584 阅读 · 0 评论 -
压缩版 | 通用人工智能(AGI)与自动化技术的深度融合:下一次可能颠覆所有岗位的技术革命
当机器能够完成绝大多数人类工作时,“人”的价值将如何界定?这个问题的答案将塑造我们的未来,决定我们将走向“无用阶级”、“超人类”精英还是“意义经济”的爆发。无论结果如何,谨慎设计这场革命的规则至关重要,以保证人类能在技术发展的浪潮中保持尊严。通过积极主动地引导技术发展,我们可以确保其成为推动社会前进的力量,而非分裂因素。原创 2025-07-03 17:14:21 · 363 阅读 · 0 评论 -
Vue.js 全面入门与开发指南
渐进式:你可以逐步引入 Vue 到你的项目中,从局部模块开始,逐步过渡到整个项目。轻量级:Vue 核心库非常小,加载速度快。双向数据绑定:数据变化自动更新视图,视图变化也能影响数据。组件化开发:支持组件复用,提高开发效率。生态完善:Vue Router(客户端路由)、Vuex/Pinia(状态管理)、Vite/Webpack(构建工具)等。Vue.js 是一个灵活、高效的前端框架,适合从小型项目到大型企业级应用的开发。原创 2025-07-03 07:59:38 · 899 阅读 · 0 评论 -
Java AI 全栈工程师前置知识:构建现代智能应用的核心技能
Vue.js 是一款渐进式的 JavaScript 前端框架,广泛用于构建用户界面。它具有轻量级、易上手、组件化等特点,非常适合与后端服务进行数据交互。Redis 是一个开源的内存数据库,支持多种数据结构,常用于缓存、会话存储、消息队列等场景,尤其在高并发系统中至关重要。Spring AI 是 Spring 生态中用于整合大语言模型(LLM)的新项目,而 LangChain4j 是 Java 社区流行的 LLM 应用开发框架。两者都支持 OpenAI、本地模型等多种接口。原创 2025-07-03 07:50:26 · 832 阅读 · 0 评论 -
SSM + Spring Boot:现代 Java Web 开发技术详解
Spring 是一个开源的轻量级 Java 开发框架,旨在提高应用程序的可维护性和松耦合性。它提供了全面的基础设施支持,是构建企业级应用的首选框架之一。MyBatis 是一个基于 Java 的持久层框架,它简化了数据库操作,同时保留了 SQL 的灵活性。技术作用Spring提供 IoC 和 AOP 支持Spring MVC构建 Web 层MyBatis持久层操作快速构建、简化配置。原创 2025-07-03 07:43:10 · 582 阅读 · 0 评论 -
Java+AI工程师:经典与未来的碰撞,2025年最值得深耕的技术赛道
在 AI 技术落地的深水区,企业真正需要的是既能建高楼(Java 基建),又能做装修(AI 算法)的复合型人才。对于拥有 Java 背景的开发者而言,现在入局 AI 领域,相当于在技术浪潮中拿到了“头等舱船票”。原创 2025-07-02 14:28:22 · 952 阅读 · 0 评论 -
Java后端开发:Spring AI、LangChain4j、RuoYi 先学哪个?
官网地址核心功能提供与大语言模型(LLM)集成的抽象接口支持 OpenAI、Azure OpenAI、Anthropic 等主流平台集成 Spring Boot,易于嵌入现有项目适合场景构建基于 LLM 的智能应用(如客服机器人、数据生成器)需要快速接入 AI 能力的企业级系统优势与 Spring 生态无缝融合社区活跃,文档完善持续更新,紧跟 AI 技术前沿如果你的目标是…推荐优先学习找工作、积累项目经验✅ RuoYi构建 AI 智能应用深度探索 AI 能力。原创 2025-07-02 14:14:26 · 764 阅读 · 0 评论 -
若依框架 + AI智能时代:打造超级低代码开发新纪元
在 AI 技术不断成熟的今天,我们不再只是代码的搬运工,而是系统的架构师与智能化的引导者。通过将若依框架与AI 工具相结合,我们可以实现真正的“超级低代码开发”,让全栈开发变得更加轻松、高效、智能。展望未来AI 将进一步渗透到软件开发生命周期的各个环节;更多智能化工具将涌现,助力开发者提升效率;“AI+低代码”将成为主流开发范式之一。原创 2025-07-02 06:23:30 · 1164 阅读 · 0 评论 -
Cursor:下一代 AI 代码编辑器,如何重塑开发体验?
Cursor 是一款基于 AI 技术构建的现代化代码编辑器,它不仅继承了 VSCode 的强大插件生态和用户界面,还集成了深度学习模型(如 GPT、KimI 等),实现了代码补全、自然语言编程、智能调试等多项高级功能。它的目标是让开发者通过更自然的方式与代码交互,从而大幅提升开发效率。使用 AI 不断生成代码片段,直到满意为止类似于“无限试错”,但成本可能较高(尤其是商业模型)Cursor 作为一款融合了 AI 技术的新型代码编辑器,正在逐步改变开发者的编程方式。原创 2025-07-01 08:20:19 · 606 阅读 · 0 评论 -
智能医疗:Java大模型应用项目全流程实战(企业级)
随着AI技术的快速发展,智能化已经成为各行各业的重要趋势。在医疗领域,AI技术的应用不仅能提升诊疗效率,还能优化患者体验。本文将带大家走进一个基于Java的企业级智能医疗项目实战,深入解析如何通过LangChain4j + 向量数据库 + RAG + Function Calling等前沿技术,打造一个具备智能客服、AI助手能力的医疗系统。本项目以真实业务场景为驱动JavaMySQLMavenSpringBootLLMsAgentsToolsRAGAPI调用。原创 2025-07-01 08:07:35 · 1123 阅读 · 0 评论 -
SpringBoot + Vue 项目实战:打造一个企业级在线办公系统(分布式架构)
本项目不仅是一个简单的 CRUD 系统,更是企业级开发的缩影。通过该项目的学习,你将掌握:✅ 分布式系统设计✅ 前后端分离开发流程✅ 安全机制(JWT + AES)✅ 异步编程与线程池✅ AI辅助开发技巧✅ 微服务架构与部署流程35岁不是终点,而是新的起点。只要你愿意学习,永远不晚。📌欢迎关注我的博客,获取更多实战项目与AI工具结合的教程!原创 2025-07-01 07:48:12 · 749 阅读 · 0 评论 -
Java 又无敌了?揭秘 Spring AI 背后的核心技术栈!
Java 之所以被称为“无敌”,是因为它不仅稳定、安全、跨平台,而且拥有庞大的生态体系。从 Spring 到 Spring Boot,再到如今的 Spring AI,Java 正在不断进化,适应新时代的需求。学无止境,继续加油吧,Java 工程师!原创 2025-06-30 12:00:48 · 937 阅读 · 0 评论 -
使用 LangChain4j + Ollama + RAG 构建 Java 本地 AI 智能问答系统
随着大语言模型(LLM)技术的迅猛发展,AI 正在逐步渗透到各行各业。传统企业中广泛使用的 Java 应用也面临智能化升级的需求。然而,推翻原有架构重新开发成本高昂且风险较大。本文将带你从零开始,使用技术栈,在不破坏现有 Spring Boot 项目结构的前提下,为 Java 应用注入 AI 能力,构建一个本地化、可扩展、安全可控的智能问答系统。LangChain4j 是专为 Java 开发者设计的 LLM 集成框架,其灵感来源于 Python 的 LangChain。原创 2025-06-30 11:35:43 · 856 阅读 · 0 评论 -
Java 打败 100% 的成神之路:从零到全栈 java + AI 工程师的成长路线图
阶段技术栈目标基础阶段打好编程基础Web 开发能独立开发网站中间件提升系统性能微服务构建企业级架构AI 工程成为 AI 工程师高并发分布式事务、分布式锁、ELK、链路追踪支撑百万并发底层原理操作系统、JVM、Linux、Shell理解底层逻辑架构设计设计模式、DDD、微服务治理成为架构师“不是最聪明的人赢,而是最有毅力、最会坚持的人赢。坚持每天进步 1%,一年后你就是别人眼中的“大佬”。你若盛开,清风自来。📌。原创 2025-06-28 20:26:25 · 667 阅读 · 0 评论 -
LangChain4j 入门保姆级教程
随着大语言模型(LLM)的广泛应用,开发者对如何在 Java 生态中集成和调用 LLM 的需求日益增长。为此,应运而生。LangChain4j 是一个专为 Java 开发者设计的轻量级库,旨在简化与大型语言模型的交互过程,提供统一的接口来对接各种 LLM 模型(如 OpenAI、Anthropic、阿里云 Qwen 等),并支持提示工程、记忆管理、工具调用等高级功能。.build();System.out.println(chatbot.chat("你好"));原创 2025-06-26 07:36:35 · 1035 阅读 · 1 评论 -
Spring AI 入门保姆级教程
随着人工智能技术的快速发展,越来越多的企业开始尝试将 AI 能力集成到自己的业务系统中。Spring 作为 Java 开发中最流行的框架之一,也在积极拥抱 AI 技术,推出了Spring AI项目。Spring AI 是一个用于简化在 Spring 应用程序中集成 AI 功能的项目,它提供了一系列开箱即用的接口和工具,帮助开发者快速接入主流的大语言模型(LLM),如 OpenAI、Anthropic、阿里云通义千问(Qwen)、百度文心一言等。原创 2025-06-26 07:07:12 · 1060 阅读 · 0 评论 -
面试八股文深度解析:阿里云百炼问答
构建基于阿里云百炼的知识问答应用,不仅需要掌握平台操作细节,更要理解大模型应用的工程化思维。技术深度:如参数调优的原理、检索策略的选择依据问题解决能力:如生产故障的排查思路、性能优化的优先级业务理解能力:如不同行业场景下的方案差异化设计建议候选人结合具体业务场景,准备1-2个完整项目案例,从需求分析到落地效果进行全流程梳理,从而在面试中展现出从技术执行到架构设计的系统思考能力。原创 2025-06-25 22:15:18 · 797 阅读 · 0 评论 -
【AI本地部署八股文】Windows 部署 Ollama + Open WebUI + 内网穿透 全流程(面试高频题)
Ollama是一个由 Ollama 官方推出的轻量级本地大语言模型运行框架,支持多种主流开源模型如 Llama2、Qwen、Mistral、Phi-3、Llama3 等。✅ 跨平台支持(macOS / Linux / Windows)✅ 支持 GPU 加速(需 CUDA 环境)✅ 提供 REST API 接口,便于集成到其他系统✅ 社区活跃,持续更新新模型✅ 支持多模型切换与自定义模型导入💡 小贴士:Ollama 并非训练模型的工具,而是推理引擎,适合本地快速部署和调用。原创 2025-06-25 22:02:23 · 694 阅读 · 0 评论 -
黑马程序员Java+AI培训课程智能项目深度解析:从代码到AI落地的全链路实战
黑马程序员的Java+AI培训课程通过企业级智能项目实战,帮助学员掌握从代码开发到AI模型落地的全链路技能。对于有志于转型AI领域的Java开发者,课程提供了系统的学习路径与实战机会。然而,学员需结合自身基础与职业规划理性选择,并在学习过程中注重项目经验的积累与技术深度的挖掘。原创 2025-05-25 12:18:03 · 1322 阅读 · 0 评论