蓝桥杯1140 最小质因子之和(Hard Version)

题目描述

定义 F(i) 表示整数 i 的最小质因子。现给定一个正整数 N,请你求出

输入描述

第 1 行为一个整数 T,表示测试数据数量。

接下来的 T 行每行包含一个正整数 N。

1≤T≤10^{6},2≤N≤2×10^{7}

输出描述

输出共 T 行,每行包含一个整数,表示答案。

输入输出样例

示例 1

输入

3
5
10
15

输出

12
28
59

 

#include<iostream>
using namespace std;

typedef long long ll;
const int N = 2e7+10;
int t;

ll prime[N];  //存储所有筛出的质数
bool is_prime[N];  //状态数组,is_prime[i]为 1表示 i为质数
ll cnt;  //质数的个数 
ll sum[N];  //f[i]表示从2到i的所有数的最小质因子之和


//线性筛: 
void f(int n)
{
    for(int i=2; i<=n; ++i)
    {
        is_prime[i]=1;  //初始化:默认所有数为质数
    }
    
    for(int i=2; i<=n; ++i)
    {
        if(is_prime[i])
        {
            cnt++;
            prime[cnt]=i;
        }
        
        for(int j=1; j<=cnt; ++j)
        {
            int p = prime[j];
            
            if(i*p > n) break;
            is_prime[i*p] = 0;
            
            if(i%p == 0) break;
        }
    }
}

int main()
{
    cin>>t;
    
    f(N);
    
    //预处理前缀和数组sum
    for(int i=2; i<=N; ++i)
    {
        if(is_prime[i])
        {
            sum[i] += sum[i-1]+i;  //是质数最小质因子就是该数本身
        }
        else 
        {
            int j;
            for(j=1; j<=cnt; j++)
            {
                if(i%prime[j]==0) break;  //否则就找最小质因子
            }
            sum[i] += sum[i-1]+prime[j]; 
        }
    } 
    
    while(t--)
    {
        int n;        
        cin>>n;
        
        cout<<sum[n]<<endl;
    }
    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值