题目描述
定义 F(i) 表示整数 i 的最小质因子。现给定一个正整数 N,请你求出 。
输入描述
第 1 行为一个整数 T,表示测试数据数量。
接下来的 T 行每行包含一个正整数 N。
1≤T≤,2≤N≤2×
。
输出描述
输出共 T 行,每行包含一个整数,表示答案。
输入输出样例
示例 1
输入
3
5
10
15
输出
12
28
59
#include<iostream>
using namespace std;
typedef long long ll;
const int N = 2e7+10;
int t;
ll prime[N]; //存储所有筛出的质数
bool is_prime[N]; //状态数组,is_prime[i]为 1表示 i为质数
ll cnt; //质数的个数
ll sum[N]; //f[i]表示从2到i的所有数的最小质因子之和
//线性筛:
void f(int n)
{
for(int i=2; i<=n; ++i)
{
is_prime[i]=1; //初始化:默认所有数为质数
}
for(int i=2; i<=n; ++i)
{
if(is_prime[i])
{
cnt++;
prime[cnt]=i;
}
for(int j=1; j<=cnt; ++j)
{
int p = prime[j];
if(i*p > n) break;
is_prime[i*p] = 0;
if(i%p == 0) break;
}
}
}
int main()
{
cin>>t;
f(N);
//预处理前缀和数组sum
for(int i=2; i<=N; ++i)
{
if(is_prime[i])
{
sum[i] += sum[i-1]+i; //是质数最小质因子就是该数本身
}
else
{
int j;
for(j=1; j<=cnt; j++)
{
if(i%prime[j]==0) break; //否则就找最小质因子
}
sum[i] += sum[i-1]+prime[j];
}
}
while(t--)
{
int n;
cin>>n;
cout<<sum[n]<<endl;
}
return 0;
}