题目
一个分数一般写成两个整数相除的形式:N/M,其中M不为0。最简分数是指分子和分母没有公约数的分数表示形式。
现给定两个不相等的正分数 N1/M1 和 N2/M2,要求你按从小到大的顺序列出它们之间分母为K的最简分数。
输入格式:
输入在一行中按N/M的格式给出两个正分数,随后是一个正整数分母K,其间以空格分隔。题目保证给出的所有整数都不超过1000。
输出格式:
在一行中按N/M的格式列出两个给定分数之间分母为K的所有最简分数,按从小到大的顺序,其间以1个空格分隔。行首尾不得有多余空格。题目保证至少有1个输出。
输入样例:
7/18 13/20 12
输出样例:
5/12 7/12
思路(注意事项)
- gcd lcm的求法
- 题目没有说给出的两个分数是按照从小到大给出的,所以要进行判断,如果递减则要交换。
- 测试点2: 两数之间,不包括边界
纯代码
#include<bits/stdc++.h>
using namespace std;
int gcd(int x, int y)
{
return y ? gcd (y, x % y) : x;
}
int lcm(int x, int y)
{
return x * y / gcd(x, y);
}
int main(){
int n1, m1, n2, m2, k;
scanf("%d/%d %d/%d %d", &n1, &m1, &n2, &m2, &k);
int t = lcm(m1, m2);
t = lcm (t, k);
n1 *= t / m1;
n2 *= t / m2;
if(n1 > n2) swap(n1,n2);
int flag = 1;
for (int i = n1 + 1; i < n2; i ++)
{
if (i % (t / k) == 0 && gcd (i / (t/k), k) == 1)
{
if (flag == 0) printf(" ");
printf("%d/%d", i / (t/k), k);
flag = 0;
}
}
cout << endl;
return 0;
}
题解(加注释)
#include<bits/stdc++.h>
using namespace std;
// 定义函数计算两个整数的最大公约数(GCD)
int gcd(int x, int y) {
return y ? gcd(y, x % y) : x; // 使用递归实现欧几里得算法
}
// 定义函数计算两个整数的最小公倍数(LCM)
int lcm(int x, int y) {
return x * y / gcd(x, y); // 最小公倍数等于两数乘积除以最大公约数
}
int main() {
int n1, m1, n2, m2, k; // 分别表示两个分数的分子和分母,以及目标分母 k
// 输入两个分数和目标分母 k
scanf("%d/%d %d/%d %d", &n1, &m1, &n2, &m2, &k);
// 计算两个分数分母的最小公倍数
int t = lcm(m1, m2);
// 将目标分母 k 也纳入最小公倍数的计算
t = lcm(t, k);
// 将两个分数的分子转换为以 t 为分母的形式
n1 *= t / m1; // 调整第一个分数的分子
n2 *= t / m2; // 调整第二个分数的分子
// 确保 n1 <= n2,如果 n1 > n2,则交换它们
if(n1 > n2) swap(n1, n2);
// 标志变量,用于控制输出格式(避免在第一个分数前输出空格)
int flag = 1;
// 遍历从 n1 到 n2 之间的所有可能的分子
for (int i = n1 + 1; i < n2; i++) {
// 检查当前分子 i 是否能整除 t/k,并且 i/(t/k) 与 k 是否互质
if (i % (t / k) == 0 && gcd(i / (t / k), k) == 1) {
// 如果已经输出过分数,则在当前分数前加一个空格
if (flag == 0) printf(" ");
// 输出当前的最简分数
printf("%d/%d", i / (t / k), k);
// 标志变量置为 0,表示已经输出过分数
flag = 0;
}
}
// 输出换行符,结束输出
cout << endl;
return 0;
}