【练习】PAT 乙 1062. 最简分数(最大公约数、最小公倍数)

题目

一个分数一般写成两个整数相除的形式:N/M,其中M不为0。最简分数是指分子和分母没有公约数的分数表示形式。

现给定两个不相等的正分数 N1/M1 和 N2/M2,要求你按从小到大的顺序列出它们之间分母为K的最简分数。

输入格式:

输入在一行中按N/M的格式给出两个正分数,随后是一个正整数分母K,其间以空格分隔。题目保证给出的所有整数都不超过1000。

输出格式:

在一行中按N/M的格式列出两个给定分数之间分母为K的所有最简分数,按从小到大的顺序,其间以1个空格分隔。行首尾不得有多余空格。题目保证至少有1个输出。

输入样例:

7/18 13/20 12

输出样例:

5/12 7/12

来源:PAT 乙 1062. 最简分数(20)


思路(注意事项)

  • gcd lcm的求法
  • 题目没有说给出的两个分数是按照从小到大给出的,所以要进行判断,如果递减则要交换。
  • 测试点2: 两数之间,不包括边界

纯代码

#include<bits/stdc++.h>

using namespace std;

int gcd(int x, int y)
{
	return y ? gcd (y, x % y) : x;
}
int lcm(int x, int y)
{
	return x * y / gcd(x, y);
}
int main(){
	int n1, m1, n2, m2, k;
	scanf("%d/%d %d/%d %d", &n1, &m1, &n2, &m2, &k);

    
	int t = lcm(m1, m2);
	t = lcm (t, k);
	n1 *= t / m1;
	n2 *= t / m2;

    if(n1 > n2) swap(n1,n2);
    
	int flag = 1;
	for (int i = n1 + 1; i < n2; i ++)
	{
		if (i % (t / k) == 0 && gcd (i / (t/k), k) == 1)
		{
			if (flag == 0) printf(" ");
			printf("%d/%d", i / (t/k), k);
			flag = 0;
		} 
	}
    cout << endl;
	return 0;
} 

题解(加注释)

#include<bits/stdc++.h>

using namespace std;

// 定义函数计算两个整数的最大公约数(GCD)
int gcd(int x, int y) {
    return y ? gcd(y, x % y) : x;  // 使用递归实现欧几里得算法
}

// 定义函数计算两个整数的最小公倍数(LCM)
int lcm(int x, int y) {
    return x * y / gcd(x, y);  // 最小公倍数等于两数乘积除以最大公约数
}

int main() {
    int n1, m1, n2, m2, k;  // 分别表示两个分数的分子和分母,以及目标分母 k
    // 输入两个分数和目标分母 k
    scanf("%d/%d %d/%d %d", &n1, &m1, &n2, &m2, &k);

    // 计算两个分数分母的最小公倍数
    int t = lcm(m1, m2);
    // 将目标分母 k 也纳入最小公倍数的计算
    t = lcm(t, k);

    // 将两个分数的分子转换为以 t 为分母的形式
    n1 *= t / m1;  // 调整第一个分数的分子
    n2 *= t / m2;  // 调整第二个分数的分子

    // 确保 n1 <= n2,如果 n1 > n2,则交换它们
    if(n1 > n2) swap(n1, n2);

    // 标志变量,用于控制输出格式(避免在第一个分数前输出空格)
    int flag = 1;
    // 遍历从 n1 到 n2 之间的所有可能的分子
    for (int i = n1 + 1; i < n2; i++) {
        // 检查当前分子 i 是否能整除 t/k,并且 i/(t/k) 与 k 是否互质
        if (i % (t / k) == 0 && gcd(i / (t / k), k) == 1) {
            // 如果已经输出过分数,则在当前分数前加一个空格
            if (flag == 0) printf(" ");
            // 输出当前的最简分数
            printf("%d/%d", i / (t / k), k);
            // 标志变量置为 0,表示已经输出过分数
            flag = 0;
        } 
    }
    // 输出换行符,结束输出
    cout << endl;

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值