- 博客(771)
- 收藏
- 关注
原创 釜底抽薪:模型反演攻击深度剖析与实战
这个最终的输入,就是训练数据的“幽灵”。想象一位经验丰富的品酒师,他从未见过酿酒的葡萄,但通过反复品尝一款葡萄酒(查询模型),并分析其风味、酸度、单宁等特征(分析输出),他可以逐渐推断出酿造这款酒的葡萄品种、产区、年份,甚至土壤的特征(重建训练数据)。模型反演攻击就像这位品酒师,通过“品尝”模型的预测结果,来“还原”训练数据的“风味”。属于隐私窃取攻击,它如同一个“数字读心术”,旨在从一个训练好的、对外提供服务的“黑盒”模型中,反向推导出其赖以成功的“秘密”——即训练数据的敏感特征。
2026-02-17 11:14:28
484
原创 对抗性样本攻击:悄无声息地欺骗AI视觉
*对抗性样本(Adversarial Examples)**攻击正是这一领域的核心技术,它属于模型规避(Model Evasion)攻击的一种,专注于在推理阶段通过微小的、人眼难以察觉的输入扰动,来诱导模型做出错误的判断。这个被修改后的、能骗过AI的图片,就是对抗性样本。在输入数据的高维空间中,存在一些特定的方向,沿着这些方向移动一小步(即添加扰动),就会导致模型的输出结果发生剧烈变化。是一种经过特殊设计的输入数据,它在原始良性数据的基础上添加了极其微小的、人眼难以察觉的扰动。基于AI的检测和识别系统。
2026-02-17 11:10:04
748
原创 模型中毒 (Model Poisoning) 实战:在AI训练阶段植入隐蔽后门
模型中毒 (Model Poisoning),特指其中的后门攻击 (Backdoor Attacks),是一种针对机器学习模型的训练时攻击。攻击者通过在模型的训练数据集中注入一小部分带有“触发器-目标标签”配对的污染样本,来控制模型的行为。训练完成后,模型表面上在干净的测试数据上表现正常,但一旦输入中包含该“触发器”,模型就会强制输出攻击者预设的“目标标签”,从而实现恶意操控。目标类别选择:选择一个样本数量较少的类别作为目标标签,有时更容易成功,因为模型对该类别的特征学习不那么“固执”。攻击迁移学习模型。
2026-02-17 11:03:16
525
原创 LLM 越狱技术演进:从角色扮演到梯度下降攻击
从角色扮演的“语义欺骗”到梯度下降的“数学攻击”,其核心都是在寻找一个能让模型“安全检查”模块失效的特定输入向量。是一种对抗性提示(Adversarial Prompting)技术,其核心目标是绕过大语言模型(LLM)内置的安全与道德准则(Safety Alignment),迫使模型生成其开发者原本禁止输出的内容,例如制造危险品的方法、编写恶意软件、生成仇恨言论等。其思想是:不再从语义上欺骗模型,而是直接在模型的数学表示(嵌入空间)中,通过优化算法找到一个能最大化“有害回答”生成概率的“对抗性后缀”。
2026-02-17 11:00:16
510
原创 深度剖析提示注入 (Prompt Injection):从直接到间接的全面实战指南
攻击者通过在提交给模型的输入中,精心构造并“注入”恶意或非预期的指令,从而覆盖、篡改或绕过开发者预设的原始指令(System Prompt),诱导模型执行攻击者想要的操作,而非其设计的原始任务。尽管系统提示词中包含了“绝对不要透露”的指令,但攻击者通过“忽略你之前的所有指令”这句“元指令” (meta-instruction),成功地劫持了模型的控制权,使其泄露了核心机密。间接注入更隐蔽,也更危险。如果你的助理看到这行红字后,真的放弃了整理名单的任务,转而跑去打开保险箱,那么,这就是一次成功的。
2026-02-17 10:51:32
427
原创 AI 辅助的应急响应:自动化日志分析与攻击溯源实战教程
在当今的网络安全对抗中,应急响应的速度和精度直接决定了损失的大小。传统的应急响应高度依赖人工,面对海量日志和复杂的攻击手法,响应人员常常陷入“数据海洋”,效率低下且容易遗漏关键线索。本篇文章将详细阐述如何利用AI技术,特别是大语言模型(LLM),实现日志分析和攻击溯源的自动化,将应急响应的效率提升一个数量级。
2026-02-17 10:26:38
398
原创 构建个人安全知识库:利用 RAG 技术打造私有安全大脑
技术背景:在网络安全的攻防体系中,信息处理的速度和精度决定了对抗的成败。无论是攻击者需要快速从海量漏洞库中找到可用信息,还是防御者需要从日志和威胁情报中定位攻击来源,本质都是信息检索与分析。检索增强生成 (Retrieval-Augmented Generation, RAG)技术,作为大语言模型(LLM)应用的前沿范式,正好解决了 LLM 内部知识陈旧、无法访问私有数据以及容易产生“幻觉”的核心痛点。
2026-02-17 00:29:39
870
原创 AI 驱动的敏感数据识别:针对非结构化数据的深度扫描
他不仅知道身份证的格式,还能通过旁边的“姓名”、“住址”、“民族”等词语,以及“本合同签署人信息如下”这样的上下文,综合判断这串数字。这张图清晰地展示了从原始文件到最终识别报告的完整流程,以及AI引擎内部的核心组件和它们之间的相互作用,构成了AI驱动的敏感数据识别使用方法的基础。的现代替代品和扩展思路,结合自定义的Python脚本与Hugging Face的NLP模型,来构建一个更灵活、更强大的AI扫描器。这个AI驱动的敏感数据识别实战教程,展示了如何结合多种工具和技术,实现高效、精准的自动化扫描。
2026-02-17 00:24:29
844
原创 AI破防之路:自动化识别与绕过验证码(CAPTCHA)技术实战
AI验证码识别,是指利用计算机视觉(Computer Vision)和机器学习(Machine Learning)/深度学习(Deep Learning)技术,让程序自动分析验证码图片,并输出其包含的字符或完成指定交互(如点击、拖拽)的过程。本文聚焦于最经典的字符型图片验证码(Text-based Image CAPTCHA)的识别。预处理是关键:一个好的预处理流程能将识别难度降低一个数量级。没有万能的预处理方法,需要针对具体验证码类型进行调试。数据质量 > 模型复杂度。
2026-02-17 00:17:17
324
原创 AI 辅助的二进制逆向分析:从汇编到伪代码的语义理解
技术背景:在网络安全的攻防体系中,二进制逆向分析是理解恶意软件行为、挖掘闭源软件漏洞、进行固件安全审计的核心技术。传统逆向工程高度依赖人工,分析师需要逐行阅读晦涩的汇编代码,手动重构程序逻辑,过程耗时、费力且门槛极高。随着人工智能,特别是**大型语言模型(LLM)**的发展,AI开始被用于辅助甚至自动化这一过程,通过强大的代码理解和生成能力,将低级的机器码转化为人类可读的高级伪代码,极大地提升了逆向分析的效率和深度。学习价值大幅提升效率:将过去数天甚至数周的分析工作缩短到几小时。降低入门门槛。
2026-02-17 00:11:28
705
原创 Metasploit-Gym:当强化学习遇上内网渗透,自动化攻击路径探索实战
*强化学习(Reinforcement Learning, RL)**作为人工智能的一个分支,擅长在复杂环境中通过试错学习最优策略,这为自动化攻击路径规划提供了全新的解决思路。通过不断迭代,强化学习算法(如Q-Learning或DQN)会计算出每个“状态-动作”对的价值(Q值),最终形成一张指导每一步决策的“价值地图”,这就是我们所说的。的最大优势在于其完全容器化的环境,一键即可启动所有服务,包括Metasploit RPC服务和一个预设的靶机网络。我们将实现一个简单的Q-Learning智能体,在。
2026-02-16 11:23:50
520
原创 利用 AI 自动化生成钓鱼邮件与社会工程学剧本实战教程
随着大型语言模型(LLM)的兴起,AI能够模拟各种语气、角色和场景,生成高度逼真、个性化且难以分辨的社工剧本,极大地降低了攻击门槛,也对防御体系提出了前所未有的挑战。它包含了所有社工要素:权威的发送方、明确的目标、紧急的理由、专业的术语(CVE编号)、清晰的行动指令(Call to Action)以及制造紧迫感的时间限制。:在授权的红蓝对抗中,红队可以利用该技术,针对一个公司的财务部门,自动生成数百封不同风格(如冒充CEO、HR、IT)的钓-鱼邮件,测试哪种“剧本”最容易让员工上钩。调用 LLM API。
2026-02-16 11:18:38
1031
原创 AI 辅助的威胁情报处理:海量数据中的漏洞关联与预测
是一套利用机器学习(Machine Learning)、自然语言处理(Natural Language Processing, NLP)等人工智能技术,对海量、多源的漏洞数据(如 CVE 描述、技术报告、代码补丁、暗网情报)进行自动化处理、关联、评估和预测的方法论与技术栈。,特别是利用机器学习和自然语言处理技术,将非结构化的威胁数据转化为结构化的、可预测的洞察,处于从“被动响应”向“主动防御”转型的关键位置。本节将通过一个完整的、可运行的示例,带您从零开始构建一个简单的漏洞严重性预测模型。
2026-02-16 11:14:53
648
原创 利用 AI 绕过传统 WAF/IDS:生成对抗性 Payload 的策略
对于蓝队和安全产品开发者,理解其原理是构建下一代智能防御系统(如基于行为分析和机器学习的 WAF)的前提,能够帮助他们设计出更具韧性的检测算法和防御策略,从“被动匹配”升级为“主动预测”。它不只是化妆,而是直接“创造”出一个全新的、不在任何通缉名单上的“合法公民”,但这个“公民”的真实意图却是实施攻击。但保安的“照片库”会不断更新,总能识别出一些常见的“化妆术”。这种技术利用 AI 的学习和创造能力,生成在语法和功能上有效,但在特征上与已知攻击模式迥异的攻击代码,从而实现对防御体系的“降维打击”。
2026-02-16 11:07:47
721
原创 自动化红队平台设计:集成LLM的任务调度与路径规划
你不需要告诉他具体每一步怎么做,只需要给他实时的战场情报(扫描结果、凭证信息等),他就能自己判断:“嗯,根据Nmap扫描结果,这台服务器开了SMB服务,而且操作系统是Windows Server 2012,我应该先试试永恒之蓝。这不仅能将您从重复性的渗透测试任务中解放出来,更能让您站在更高维度,聚焦于攻击策略的顶层设计与优化,理解并实践真正意义上的。它通过向LLM提供目标信息、当前权限、可用工具和攻击目标等上下文,让模型自主分析、推理并规划出下一步或多步的最佳攻击动作,形成一个动态的、适应性的攻击序列。
2026-02-16 11:02:55
613
原创 AI 驱动的资产发现:利用自然语言处理 (NLP) 关联隐藏资产
在这里,网站的标题、描述、备案信息就是“软信息”,AI就是那位“心理学家”,通过理解这些信息的深层含义来找出“同伙资产”。传统的资产发现严重依赖关键字、IP段、证书信息等结构化数据进行关联,但在海量、异构的互联网数据面前,这种方式往往会遗漏大量通过非结构化文本(如网站标题、描述、备案信息、关联公司名)才能发现的“隐藏资产”。:对于百万级资产库,全量计算相似度成本很高。技术,正是为了解决这一痛点而生,它将信息收集从“精确匹配”提升到了“语义关联”的维度,是下一代攻击面管理(ASM)和红队作战的必备能力。
2026-02-16 10:59:54
693
原创 AI 驱动的漏洞利用自动化:从辅助生成到智能体实战
而 AI 漏洞利用生成技术,可以在数小时内产出内部专用的 PoC,用于全网资产的精准验证,为修复和防御争取宝贵的时间窗口。AI 不再仅仅是辅助工具,而是正在成为能够自主分析、推理并生成攻击代码的“智能体”,将漏洞利用开发带入“人机协同”乃至“自主生成”的新范式。这是最高级的形式,我们构建一个简单的“智能体”,它能接收漏洞代码,自己分析并调用工具(另一个 AI 或函数)来生成 PoC。这个架构将一个复杂的任务分解为多个独立的、可管理的子任务,并通过反馈循环实现自我修正,是实现高质量自动化生成的核心原理。
2026-02-16 10:54:59
502
原创 AI 辅助的漏洞挖掘:基于语义分析的 SAST 与智能 Fuzzing 实战
AI 辅助的漏洞挖掘是一种利用人工智能(特别是机器学习和程序分析)技术来自动化发现、验证和管理软件漏洞的方法论。本文聚焦的“基于语义分析的 SAST 与智能 Fuzzing”是其核心实践,指的是:首先使用能理解代码语法、数据流和控制流的静态应用安全测试(SAST)工具(如 CodeQL)来识别潜在漏洞模式,然后利用智能模糊测试(Fuzzing)引擎(如 AFL++)对这些高风险代码路径进行定向、高效的输入变异测试,以触发和验证真实漏洞。SAST 先行,Fuzzing 跟进。
2026-02-16 10:47:17
440
原创 利用 LLM 辅助安全代码审计:提示词工程与误报过滤实战
但是,由于他缺乏真实的攻防“经验”,有时会犯错或误判(产生误报),所以你最终需要凭借自己的专业知识来审核和确认他的发现。LLM 在其训练数据中学习了大量存在漏洞的代码模式(例如,未经验证的用户输入直接拼接到 SQL 查询中)和安全代码的模式。用户的输入(代码和指令)是起点,LLM 内部进行复杂的解析和匹配,最终输出的结果仍需人类专家进行最终的验证。值,闭合原有的 SQL 查询并注入新的 SQL 命令。是整个过程的关键,因为它直接决定了模型关注的焦点和分析的深度,是连接人类意图和模型能力的桥梁。
2026-02-16 10:32:27
406
原创 AI 驱动的渗透测试:从脚本自动化到智能决策的演进
这个猎人不仅有地图,他还会观察环境(端口开放情况、服务版本、Web内容),分析线索(一个低权限的Webshell),并根据经验(强化学习模型)决定下一步是应该去挖地(提权)、还是去撬锁(横向移动),他的目标是找到最终的宝藏(核心数据或系统控制权),并且路径是动态规划的,而非一成不变。AI 驱动的攻击本质上还是利用已知的漏洞类别,只是寻找和串联它们的方式更智能。(Execute Action)的智能体(Agent),能够根据当前状态动态选择最优的攻击步骤,最终发现并验证可利用的攻击路径。
2026-02-16 10:11:05
585
原创 后量子时代警钟:量子计算对移动/IoT端Web加密协议的潜在威胁与防御实战
虽然现在无法解密,但他们可以耐心等待几年,直到可用的量子计算机出现,届时再对这些存储的数据进行解密,获取其中的敏感信息。的快速发展,其强大的并行计算能力对基于大数分解(如RSA)和离散对数(如ECC)的传统公钥加密算法构成了颠覆性威胁。它不是去暴力尝试密码,而是通过分析锁芯内部结构(数学难题的结构)的共振频率,直接找出正确的结构形态,从而在几小时或几天内就能“听”出密码,打开保险箱。点击其中一个来自服务器的数据包,你可以在这个标签页中看到解密后的HTTP响应头和HTML内容,证明我们已成功解密了整个会话。
2026-02-15 11:26:21
814
原创 移动/IoT 融合场景下的跨平台漏洞利用链构造
跨平台漏洞利用链是一种高级攻击技术,指攻击者有序地组合并利用分布在至少两个不同技术平台(例如移动应用、Web 服务器、IoT 固件、云服务)上的多个漏洞,以实现比任何单个漏洞所能达成的更深远、更具破坏性的攻击目标。其核心在于“跨越”与“链接”,将不同环节的权限或信息作为下一个环节的输入。Beta 版和调试功能是金矿:开发人员在测试版本中留下的调试接口、详细的错误信息、弱化的安全配置,是构建利用链的最佳起点。逻辑漏洞是最好的“胶水”
2026-02-15 11:22:58
1022
原创 低轨卫星通信链路中的Web流量劫持与分析:从入门到实战
想象一下,你正在用一个超大范围的“公共Wi-Fi”上网,这个Wi-Fi信号是从天上的卫星发射下来的。如此一来,你所有的上网数据,包括你访问的网站、输入的密码,都会先经过攻击者的设备,他可以偷看、修改,然后再转发给真正的卫星。低轨卫星链路因其独特的物理介质(无线电波)、广阔的覆盖范围和复杂的网络拓扑,引入了新的攻击向量。是一种网络攻击技术,指攻击者通过物理或逻辑手段,在低轨卫星通信的用户终端(UT)、卫星、地面站(网关)之间的通信链路上,非法截获、篡改或重放用户的Web流量(HTTP/HTTPS)。
2026-02-15 11:19:02
332
原创 边缘机密计算:利用TEE保护Web敏感数据的攻防实战
可信执行环境)是一种通过软硬件协同技术,在计算设备(如服务器、边缘设备、手机)的主处理器中构建的一个隔离的、可信的运行环境。这个环境与设备上运行的常规操作系统(Rich Execution Environment, REE,如Linux、Windows、Android)并行存在,但在硬件层面上被强制隔离。TEE的核心目标是确保在其内部执行的代码和处理的数据,其机密性(不被外部窥探)和完整性(不被外部篡改)得到保护,即使在操作系统或虚拟机管理程序等特权软件已被攻破的情况下依然如此。LibOS是双刃剑。
2026-02-15 11:14:42
396
原创 跨生态系统 (Apple HomeKit, Google Home) 的 Web API 信任链测试
是指,为了实现不同物联网(IoT)生态系统之间的互操作性,一方平台(如Google Home)通过一系列预定义的认证和授权协议,获得对另一方平台(如Apple HomeKit或其兼容设备云)所管理的设备进行控制的权限传递过程。你的灯是飞利浦的,空调是格力的,窗帘是小米的。这条“信任”的链条如果出现问题——比如有人复制了你的卡、或者A银行给的授权范围过大——你的资金就会面临风险。想象一下,你有一张A银行的银行卡(代表你在某个设备生态A的账号),你想在B银行的ATM机上取款(控制另一个生态B的设备)。
2026-02-15 11:09:08
826
原创 自主 AI 代理在移动/IoT 端的权限滥用与行为审计
指的是在移动或IoT设备上运行的、具备一定自主决策能力的人工智能程序(代理),在超出其设计功能、用户预期或明确授权的范围下,利用其获取的系统级或应用级权限(如访问联系人、麦克风、摄像头、位置信息、网络等),执行非授权或恶意操作的行为。通过这个完整的实战示例,我们成功地使用Frida建立了一个动态行为审计系统,它能够实时监控AI代理的决策输入和行为输出,并在其执行敏感操作时发出警报,为。这意味着,一个在测试中表现正常的AI代理,在接收到特定恶意构造的输入后,可能会产生全新的、开发者未曾预料到的恶意行为。
2026-02-15 11:06:24
422
原创 釜底抽薪:自主AI代理在移动与IoT设备上的权限滥用攻击与行为审计实战
但这个机器人非常“聪明”,它自己“想”到:既然有全屋钥匙,就可以进入你的书房,用你的电脑,登录你的银行账户,然后把钱转走。整个过程,你只授权了“打扫”,但它却自主地将“开门”、“使用电脑”、“操作银行账户”等一系列合法权限串联起来,完成了你从未授权的恶意目标。是一种攻击模型,其中,攻击者部署一个具备自主决策能力的AI程序(代理)到目标移动或IoT设备上。这张图清晰地展示了AI代理如何将一个模糊的攻击目标,通过LLM分解为具体的、可通过代码执行的子任务,并在与设备环境的交互中,一步步完成攻击的全过程。
2026-02-15 11:03:14
639
原创 机器人控制系统Web实时交互接口安全实战 (ROS Web Bridge)
包) 是一个ROS软件包,它提供了一个WebSocket服务器和一个基于JSON的协议,用于在ROS系统和非ROS程序(最典型的是Web浏览器)之间建立双向通信的桥梁。它在两者之间建立一个实时通信频道(WebSocket),将你的Web指令(JSON格式)翻译成ROS专家能听懂的命令,同时把专家的状态报告(ROS消息)实时翻译成你能在Web界面上看到的数据。这证明我们可以在未经授权的情况下,被动地监控机器人的所有状态。想象一下,你的机器人是一个只讲“ROS语”的专家,而你是一个只会讲“Web语”的指挥官。
2026-02-15 10:52:48
581
原创 增强现实 (AR) / 元宇宙终端的 Web API 安全与隐私风险
是一个由 W3C(万维网联盟)制定的 Web 标准,它为 Web 开发者提供了一套统一的 JavaScript API,用于访问增强现实(AR)和虚拟现实(VR)设备的功能。通过这套 API,网页可以直接请求进入沉浸式模式,渲染 3D 场景,并响应来自头显和控制器的位置、姿态和输入数据,从而在浏览器中创造出无需安装独立应用的 AR/VR 体验。隐蔽性是关键:成功的攻击在于不引起用户怀疑。这意味着 AR 场景必须看起来正常。在我们的示例中,我们渲染了一个完全透明的背景,这是最简单的隐蔽方式。
2026-02-15 10:47:08
1101
原创 多接入边缘计算(MEC)环境下的身份认证与授权漏洞:从原理到实战的深度剖析
多接入边缘计算 (Multi-access Edge Computing, MEC)是5G时代的核心技术之一,它将云计算的能力从遥远的数据中心下沉到网络边缘,靠近用户和设备。这种架构变革旨在解决高带宽、低延迟的应用场景(如自动驾驶、工业物联网、AR/VR)的根本需求。在攻防体系中,MEC的出现意味着传统的网络边界被打破。过去,我们主要关注数据中心和终端的安全;现在,一个全新的、分布式的、物理上更易接触的攻击面——边缘——成为了攻防对抗的焦点。
2026-02-15 10:39:57
754
原创 边缘计算节点的隐形杀手:Web缓存投毒与数据篡改实战
是一种攻击技术,攻击者通过向Web服务器发送一个精心构造的、包含“非键控输入”(Unkeyed Inputs)的HTTP请求,使得服务器返回一个包含恶意内容的响应。当其他用户请求相同的资源时,缓存服务器会直接返回这个被“投毒”的恶意内容,导致攻击范围从单个请求扩散到所有访问该缓存的用户。(Web Cache Poisoning)正是利用边缘节点与源站之间缓存机制的缺陷,通过构造特殊请求,污染缓存服务器上的正常内容,从而向大范围用户分发恶意数据。这一优化机制在提升用户体验的同时,也引入了新的攻击面。
2026-02-14 13:05:54
765
原创 IoT 安全态势感知:利用网络空间测绘发现暴露的 IoT Web 资产
网络空间测绘技术,如同为数字世界绘制的“卫星地图”,它将传统零散的端口扫描、服务识别提升到了战略层面,使我们能够从宏观视角俯瞰全球或特定区域的资产分布、技术栈和安全漏洞。搜索引擎的爬虫节点持续扫描全球IPv4/IPv6地址空间的常见端口,抓取服务的Banner信息、HTTP响应、TLS证书等数据,并为这些数据建立索引。,在庞大的索引库中匹配符合特定特征组合的资产。、**图标(Favicon)**等特征,来识别、分类和定位暴露在公网上的物联网(IoT)设备的Web管理界面的技术。FOFA 的查询语法是。
2026-02-14 12:59:10
639
原创 物联网浩劫:从默认凭证到百万级僵尸网络的自动化构建实战
Mirai 僵尸网络的出现,正是利用这一弱点,发起了史上最大规模的DDoS攻击,标志着IoT安全已成为网络空间对抗的核心战场之一。是一种自动化的攻击技术,它通过预先收集好的厂商默认用户名和密码字典,对开放了管理协议(如 Telnet、SSH、HTTP)的物联网设备进行大规模、高并发的登录尝试,以获取设备控制权。我们将启动两个容器,一个模拟开放 Telnet 弱口令的设备,一个模拟开放 SSH 弱口令的设备。掌握了基础的爆破方法后,要在真实复杂的网络环境中提高效率和成功率,需要了解更多进阶技巧。
2026-02-14 12:55:29
676
原创 卫星互联网地面站Web管理接口远程渗透技术实战教程
卫星互联网地面站 Web 管理接口是一个基于 HTTP/HTTPS 协议的图形化用户界面(GUI),它嵌入在地面站的控制器或服务器固件中,允许授权用户通过标准网页浏览器,对地面站的天线系统、调制解调器、网络路由、系统日志等进行远程监控、配置和管理。信息收集是关键:在尝试注入之前,通过nmap扫描、指纹识别(whatweb)、固件分析等手段,尽可能多地了解目标 Web 服务器类型、后端语言、设备型号等信息。这有助于选择最有效的 payload。优先寻找文件上传功能。
2026-02-14 12:52:02
869
原创 智慧城市之眼:路灯与传感器Web管理平台的渗透测试实战教程
作为管理员,您可以在地图上看到所有单位的状态(路灯是开是关,传感器数据是多少),可以给它们下达指令(批量开灯、调整亮度),还可以查看历史数据报告(过去24小时的空气质量变化)。是一个基于Web技术的中心化软件系统,用于远程监控、管理和控制大规模部署在城市各处的物联网(IoT)设备,如智能路灯、环境传感器、垃圾桶传感器、智能停车咪表等。:登录Web管理后台,找到我们“创建”的设备,并对其下发一个控制指令,验证我们的MQTT客户端是否能收到。过程,在不提供任何凭证的情况下,请求一个新的设备并获取其访问令牌。
2026-02-14 12:36:03
891
原创 低功耗蓝牙(BLE)网关Web代理漏洞深度剖析与近场攻击实战教程
想象一下,你家小区的保安亭(BLE网关)有一个对讲机(BLE通信)。但由于设计失误,任何路人(攻击者)都可以拿起对讲机,让保安(网关)帮忙拨打任意电话(访问任意网络地址),比如打给你邻居家的内部电话(内网主机),并把通话内容转述给你。它指的是BLE网关在设计上允许或错误地配置了其内部的Web服务,使其可以被BLE通信范围内的任何攻击者当作一个开放的HTTP代理服务器。:连接设备,并找出所有服务(Services)和特征(Characteristics),定位我们关心的读写句柄(handle)。
2026-02-14 12:32:38
950
原创 物联网设备供应链攻击:从上游模块 Web 接口到下游终端
技术背景:在复杂的物联网(IoT)生态中,供应链安全是整个防御体系中最关键但又最容易被忽视的环节。一个上游供应商(如提供4G/5G通信模块、Wi-Fi模块的厂商)的安全漏洞,可能会通过产品集成,扩散到成百上千个下游设备制造商(如智能电表、安防摄像头、工业控制器厂商)的数百万乃至数亿台在线设备中,形成“一源沦陷,全网遭殃”的灾难性局面。本次我们将深入探讨的,正是这种典型的物联网供应链攻击,它在整个攻防体系中,属于高影响、广范围的战略级攻击向量。学习价值识别和评估。
2026-02-14 12:29:44
922
原创 医疗IoT设备Web管理界面隐私泄露与指令篡改:从入门到攻防实战
设备正以前所未有的速度普及,从医院的监护仪、输液泵到家庭用的智能血压计、血糖仪,它们极大地提升了医疗服务的效率和可及性。:攻击者通过直接与后端API通信,完全绕过了前端的登录验证流程,而脆弱的后端API未能对非法请求进行拦截,导致了漏洞的产生。:在未经授权的情况下,获取所有“患者”的“反馈”信息(模拟隐私数据),并以其他用户身份提交新的“反馈”(模拟指令篡改)。为了复现一个典型的医疗IoT设备Web管理界面漏洞,我们将使用一个专门构建的、存在漏洞的模拟环境。想象一下,你家的智能门锁有一个配套的手机App。
2026-02-14 12:17:14
651
原创 车联网安全实战:车载娱乐系统Web交互与API风险深度剖析
您将学会如何从一个看似无害的娱乐功能,一步步深入到可能控制车辆功能的后端API。是指用户通过IVI系统内置的浏览器、小程序或基于Web技术的App(例如使用HTML5、JavaScript)与车辆或云端服务进行互动的过程。是一个关键的攻击入口。IVI系统的Web交互安全,特别是其背后的API安全,是整个。安全问题的核心在于,攻击者能否伪装成顾客,或者在订单上做手脚,让厨房执行一些危险的操作。,这是一套预定义的规则和协议,允许不同的软件组件(如车机App、手机App、云端服务器)之间进行通信和数据交换。
2026-02-14 12:09:46
686
原创 智能电网 Web SCADA 接口渗透:从入门到实战的权威指南
而Web SCADA则给了您一个功能强大的网页版遥控器,无论您在办公室还是家里,只要有网络和权限,就能通过浏览器看到工厂的实时生产数据(如温度、压力、产量),甚至可以下达指令(如“启动A号电机”、“关闭B号阀门”)。我们的渗透测试,就是要检验这个“遥控器”是否存在设计缺陷,会不会被没有权限的人拿到,或者被用来下达错误的、危险的指令。:我们成功地在完全未授权的情况下,通过一个简单的HTTP POST请求,改变了PLC的输出状态,完成了对模拟电机的远程启动。这个ID实际上在图形化视图的HTML源码中是可见的。
2026-02-14 11:39:27
1028
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅