矩阵的相似对角化的条件总结和简易思维推导(易于记忆)

 # “可相似对角化”等价于“相似于对角矩阵”

由此推出矩阵相似于对角矩阵的充分必要条件:

相似于对角矩阵<-->可相似对角化<-->有n个线性无关的特征向量<-->特征值的几何重数等于代数重数 

充分不必要条件:

有n个不同的特征向量-->有n个线性无关的特征向量

--> 实对称矩阵

浅层次推导为什么有(P^-1)A P = \Lambda?

由A\alpha = \lambda\alpha,等式两边对所有列向量\alpha 集成为矩阵P = (\alpha 1 \alpha 2....),即可得AP = \LambdaP

这里P为可逆矩阵,且大小必为n*n,则必须满足P中的n个特征向量都线性无关才能有|P| != 0

也易知特征值的几何重数等于代数重数。

而对于实对称矩阵,实对称矩阵的特征向量具有正交性

(\alpha 2 T)A \alpha 1 = \lambda 1\alpha 2T\alpha 1 此为1式

(\alpha 1T)A\alpha 2= \lambda 2\alpha 1T\alpha 2 此为2式

1式左侧等于2式左侧(转置运算易得),故右侧相等;而\lambda 1 !=  \lambda 2,进而得到\alpha 2T\alpha 1=0

故两向量正交,归纳可得实对称矩阵的特征矩阵为正交矩阵(正交矩阵反过来也必然满足有n个线性无关的特征向量)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值