# “可相似对角化”等价于“相似于对角矩阵”
由此推出矩阵相似于对角矩阵的充分必要条件:
相似于对角矩阵<-->可相似对角化<-->有n个线性无关的特征向量<-->特征值的几何重数等于代数重数
充分不必要条件:
有n个不同的特征向量-->有n个线性无关的特征向量
--> 实对称矩阵
浅层次推导为什么有(P^-1)A P = ?
由A =
,等式两边对所有列向量
集成为矩阵P = (
....),即可得AP =
P
这里P为可逆矩阵,且大小必为n*n,则必须满足P中的n个特征向量都线性无关才能有|P| != 0
也易知特征值的几何重数等于代数重数。
而对于实对称矩阵,实对称矩阵的特征向量具有正交性:
( T)A
此为1式
()A
此为2式
1式左侧等于2式左侧(转置运算易得),故右侧相等;而 !=
,进而得到
故两向量正交,归纳可得实对称矩阵的特征矩阵为正交矩阵(正交矩阵反过来也必然满足有n个线性无关的特征向量)