(一)数据压缩的概念
数据压缩是指在不丢失或尽可能少丢失数据信息的前提下,通过特定的算法和技术,对原始数据进行重新编码和处理,以减少数据存储空间或传输带宽的过程。其目的是提高数据存储、传输和处理的效率,同时保证数据的可用性和一定的质量要求。
数据压缩可以分为有损压缩和无损压缩两类。无损压缩能够确保解压后的数据与原始数据完全一致,常用于对数据准确性要求较高的场景,如文本、程序代码等;有损压缩则会在一定程度上牺牲数据的精度来换取更高的压缩比,适用于对数据质量损失有一定容忍度的场景,如图像、音频、视频等多媒体数据。
(二)数据压缩的优缺点
压缩的好处和坏处
压缩的优点:以减少磁盘IO、减少磁盘存储空间。
压缩的缺点:增加CPU开销。
压缩原则
(1)运算密集型的Job,少用压缩
(2)IO密集型的Job,多用压缩
(三)MR支持的压缩编码
MapReduce支持很多的压缩的算法,下面我们分别介绍一下:
1.压缩算法对比介绍
压缩格式 | Hadoop自带? | 算法 | 文件扩展名 | 是否可切片 | 换成压缩格式后,原来的程序是否需要修改 |
DEFLATE | 是,直接使用 | DEFLATE | .deflate | 否 | 和文本处理一样,不需要修改 |
Gzip | 是,直接使用 | DEFLATE | .gz | 否 | 和文本处理一样,不需要修改 |
bzip2 | 是,直接使用 | bzip2 | .bz2 | 是 | 和文本处理一样,不需要修改 |
LZO | 否,需要安装 | LZO | .lzo | 是 | 需要建索引,还需要指定输入格式 |
Snappy | 是,直接使用 | Snappy | .snappy | 否 | 和文本处理一样,不需要修改 |
2.压缩性能的比较
压缩算法 | 原始文件大小 | 压缩文件大小 | 压缩速度 | 解压速度 |
gzip | 8.3GB | 1.8GB | 17.5MB/s | 58MB/s |
bzip2 | 8.3GB | 1.1GB | 2.4MB/s | 9.5MB/s |
LZO | 8.3GB | 2.9GB | 49.3MB/s | 74.6MB/s |
Snappy | 8.3GB | 6GB | 250MB/s | 500MB/s |
(四)压缩方式选择
压缩方式选择时重点考虑:压缩/解压缩速度、压缩率(压缩后存储大小)、压缩后是否可以支持切片。
Gzip压缩
优点:压缩率比较高;
缺点:不支持切片;压缩/解压速度一般;
Bzip2压缩
优点:压缩率高;支持切片;
缺点:压缩/解压速度慢。
Lzo压缩
优点:压缩/解压速度比较快;支持切片;
缺点:压缩率一般;想支持切片需要额外创建索引。
Snappy压缩
优点:压缩和解压缩速度快;
缺点:不支持切片;压缩率一般;
(五)压缩位置选择
在MR框架下,有三个位置可以对数据进行压缩。
- 输入给map之前。hadoop自动检查文件拓展名,如果拓展名能够匹配,就会用恰当的编解码方式对文件进行压缩和解压。 如果数据量小于块大小(128M),则不需要考虑切点问题,重点考虑压缩和解压缩速度比较快的LZO/Snappy。如果需要切片,重点考虑支持切片的Bzip2和LZO。
- Mapper输出。为了减少MapTask和ReduceTask之间的网络IO,重点考虑压缩和解压缩快的LZO,Snappy。
- Reducer输出端。如果数据需要永久保存,考虑压缩比比较高的Bzip2和Gzip。如果数据要作为下一个MapReduce的输入,需要考虑数据量和是否支持切片。
第二课时
(六)压缩参数配置
1.为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器。具体的明细如下。
压缩格式 | 对应的编码/解码器 |
DEFLATE | org.apache.hadoop.io.compress.DefaultCodec |
gzip | org.apache.hadoop.io.compress.GzipCodec |
bzip2 | org.apache.hadoop.io.compress.BZip2Codec |
LZO | com.hadoop.compression.lzo.LzopCodec |
Snappy | org.apache.hadoop.io.compress.SnappyCodec |
2.要在Hadoop中启用压缩,可以配置如下参数。 根据我们之前的分析,有三个阶段可以开启压缩,分别如下:
参数 | 默认值 | 阶段 | 建议 |
io.compression.codecs (在core-site.xml中配置) | 无,这个需要在命令行输入hadoop checknative查看 | 输入压缩 | Hadoop使用文件扩展名判断是否支持某种编解码器 |
mapreduce.map.output.compress(在mapred-site.xml中配置) | false | mapper输出 | 这个参数设为true启用压缩 |
mapreduce.map.output.compress.codec(在mapred-site.xml中配置) | org.apache.hadoop.io.compress.DefaultCodec | mapper输出 | 企业多使用LZO或Snappy编解码器在此阶段压缩数据 |
mapreduce.output.fileoutputformat.compress(在mapred-site.xml中配置) | false | reducer输出 | 这个参数设为true启用压缩 |
mapreduce.output.fileoutputformat.compress.codec(在mapred-site.xml中配置) | org.apache.hadoop.io.compress.DefaultCodec | reducer输出 | 使用标准工具或者编解码器,如gzip和bzip2 |
(七) 压缩实操案例1-Map输出端采用压缩
即使你的MapReduce的输入输出文件都是未压缩的文件,你仍然可以对Map任务的中间结果输出做压缩,因为它要写在硬盘并且通过网络传输到Reduce节点,对其压缩可以提高很多性能,这些工作只要设置两个属性即可,我们来看下代码怎么设置。
给大家提供的Hadoop源码支持的压缩格式有:BZip2Codec、DefaultCodec
在driver中修改代码
package com.root.mapreduce.compress;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.compress.BZip2Codec;
import org.apache.hadoop.io.compress.CompressionCodec;
import org.apache.hadoop.io.compress.GzipCodec;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class WordCountDriver {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
Configuration conf = new Configuration();
// 开启map端输出压缩
conf.setBoolean("mapreduce.map.output.compress", true);
// 设置map端输出压缩方式
conf.setClass("mapreduce.map.output.compress.codec", BZip2Codec.class,CompressionCodec.class);
Job job = Job.getInstance(conf);
// 省略其他.....
System.exit(result ? 0 : 1);
}
}
其他的Mapper和Reducer代码保持不变。
运行之后,发现输出的结果格式没有变化,因为它是中间过程。
(八)压缩实操案例2-Reduce输出端采用压缩
基于WordCount案例,只需要在dirvier类的代码中,去设置在reduce端输出压缩开启,并设置压缩的方式即可。
对应的代码有如下两行,其他的代码不动。
// 设置reduce端输出压缩开启
FileOutputFormat.setCompressOutput(job, true);
// 设置压缩的方式
// FileOutputFormat.setOutputCompressorClass(job, BZip2Codec.class);
FileOutputFormat.setOutputCompressorClass(job, GzipCodec.class);
// FileOutputFormat.setOutputCompressorClass(job, DefaultCodec.class);
boolean result = job.waitForCompletion(true);
System.exit(result?0:1);
}
}
其他的Mapper和Reducer代码保持不变。
运行代码之后,是否在输出结果中看到了压缩的格式。