Hadoop 和 Spark 生态系统中的核心组件

以下是 Hadoop 和 Spark 生态系统的核心组件及其功能:

 

Hadoop 生态核心组件

 

1. HDFS(Hadoop 分布式文件系统)

 

- 命令/工具: hdfs  命令(如  hdfs dfs -put  等)。

- 作用:分布式存储海量数据,提供高吞吐量、容错性强的存储方案,适合大数据批处理。

 

2. YARN(资源调度框架)

 

- 命令/工具: yarn  命令(如  yarn application -list  等)。

- 作用:管理集群资源(CPU/内存),调度分布式应用程序(如 MapReduce、Spark),实现计算资源的动态分配。

 

3. MapReduce

 

- 命令/工具: hadoop jar  运行 MapReduce 作业。

- 作用:基于 HDFS 的分布式计算模型,将任务拆分为 Map 和 Reduce 阶段,处理大规模数据的批量计算。

 

Spark 生态核心组件

 

1. Spark Core

 

- 命令/工具: spark-submit  提交作业, spark-shell  交互式环境。

- 作用:提供内存计算框架,支持分布式数据处理(RDD/Dataset/DataFrame),支持多种编程语言(Scala/Java/Python)。

 

2. Spark SQL

 

- 命令/工具:集成于 Spark Core,通过 SQL 或 DataFrame 操作数据。

- 作用:处理结构化数据,支持与 Hive 元数据集成,实现 SQL 查询和数据分析。

 

3. Spark Streaming

 

- 命令/工具:基于 Spark Core,编写流式处理程序。

- 作用:实时处理流式数据(如 Kafka、Flume),支持微批处理(Micro-Batch)和持续处理(Continuous Processing)。

 

4. MLlib(机器学习库)

 

- 命令/工具:通过 Spark Core API 调用算法。

- 作用:提供常用机器学习算法(分类、回归、聚类等),支持分布式训练和模型评估。

 

5. GraphX

 

- 命令/工具:基于 Spark Core 的图计算 API。

- 作用:处理图结构数据,支持图遍历、社区检测、最短路径等算法。

 

生态集成组件

 

- Hive:基于 Hadoop 的数据仓库,通过 SQL 操作 HDFS 数据,常与 Spark SQL 结合使用。

- HBase:基于 HDFS 的分布式 NoSQL 数据库,适合海量结构化数据随机访问。

- Kafka:分布式消息队列,用于 Spark Streaming/Hadoop 生态的数据流转。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值