图像识别技术与应用(YOLOV3)

YOLO系列

YOLO-V3 

 优点:

终于到V3了,最大的改进就是网络结构,使其更适合小目标检测。

特征做的更细致,融入多持续特征图信息来预测不同规格物体。

先验框更丰富了,3种scale,每种3个规格,一共9种。

softmax改进,预测多标签任务。

多scale

 步长越大代表我们得到的最后一个图像尺寸越小。

scale变换经典方法 

卷积 可以实现下采集,图片尺寸变小是下采样,图片尺寸变大是上采样。

 残差连接-为了更好的特征 

从今天的角度来看,基本所有网络架构都用上了残差连接的方法。

V3中也用了resnet的思想,堆叠更多的层来进行特征提取。

 resnet可以确保它增加层数,但不会对最后的结果产生下降的影响。

核心网络架构

没有池化和全连接层,全部卷积下采样通过stride为2实现3种scale,更多先验框基本上当下经典做法全融入了。

 52x52适合测试小目标,26x26适合测试中目标,13x13适合测试大目标。图中的block代表一些卷积操作。

 

 

 

 softmax层替代 

物体检测任务中可能一个物体有多个标签。

logistic激活函数来完成,这样就能预测每一个类别是/不是。

 

总结: v3与前两个对比,v3在预测时间和MAP(平均精度均值)上更有优势。

在网络结构改进方面,v3更适合检测小目标,并且特征提取更加细致,融入了多尺度的特征图信息。

在softmax回归改进方面,针对多标签任务,v3采用了新的激活函数,允许一个物体存在多标签,并通过设定阈值来确定标签。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值