最长不下降子序列(LIS)(经典动态规划与二分优化)

题目描述

设有由n个不相同的整数组成的数列,记为: a(1)、a(2)、……、a(n)且a(i)<>a(j)  (i<>j)。例如3,18,7,14,10,12,23,41,16,24。若存在i1<i2<i3<… < ie且有a(i1)<a(i2)<…  <a(ie)则称为长度为e的不下降序列。如上例中3,18,23,24就是一个长度为4的不下降序列,同时也有3,7,10,12,16,24长度为6的不下降序列。程序要求,当原数列给出之后,求出最长的不下降序列。

输入

第一行为n,表示n个数(10<=n<=10000)
第二行n个整数,数值之间用一个空格分隔(1<=a(i)<=n)

输出

最长不下降子序列的长度

样例输入 Copy
3
1 2 3
样例输出 Copy
3

动归做法:

用dp[i]表示以a[i]结尾的LIS串长度,

边界:初值都为1(至少有自己一个,序列长度为1)

状态转移:对于每一个a[i],要考虑能不能续在它前面的序列后面,遍历它前面的每一个数,如果比它大,就可以,更新dp[i],dp[i]=max(dp[j]+1,dp[i])

#include <bits/stdc++.h>
using namespace std;
using ll = long long;
int n;
int a[10010];
int dp[10010];
int main()
{
    ios::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
    cin >> n;
    for (int i = 1;i <= n;i++)
    {
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值