题目描述
设有由n个不相同的整数组成的数列,记为: a(1)、a(2)、……、a(n)且a(i)<>a(j) (i<>j)。例如3,18,7,14,10,12,23,41,16,24。若存在i1<i2<i3<… < ie且有a(i1)<a(i2)<… <a(ie)则称为长度为e的不下降序列。如上例中3,18,23,24就是一个长度为4的不下降序列,同时也有3,7,10,12,16,24长度为6的不下降序列。程序要求,当原数列给出之后,求出最长的不下降序列。
输入
第一行为n,表示n个数(10<=n<=10000)
第二行n个整数,数值之间用一个空格分隔(1<=a(i)<=n)输出
最长不下降子序列的长度
样例输入 Copy
3 1 2 3样例输出 Copy
3
动归做法:
用dp[i]表示以a[i]结尾的LIS串长度,
边界:初值都为1(至少有自己一个,序列长度为1)
状态转移:对于每一个a[i],要考虑能不能续在它前面的序列后面,遍历它前面的每一个数,如果比它大,就可以,更新dp[i],dp[i]=max(dp[j]+1,dp[i])
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
int n;
int a[10010];
int dp[10010];
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
cin >> n;
for (int i = 1;i <= n;i++)
{

最低0.47元/天 解锁文章
1256

被折叠的 条评论
为什么被折叠?



