你是否遇到过这样的 “魔幻时刻”:用int变量存 1234567890123,结果输出变成了一串诡异的数字?当long long也在百亿级运算面前败下阵来,C++ 程序员的终极武器 ——高精度算法,就该闪亮登场了!今天,我们就来揭开它的神秘面纱,手把手教你用代码驯服百万位数字的 “洪荒之力”!
一、为什么需要高精度?
先来看个 “翻车现场”:
#include <iostream>
int main() {
int num = 1234567890123;
std::cout << num << std::endl;
return 0;
}
运行结果大概率是个负数!这是因为int类型的范围通常是-2147483648到2147483647,直接存超范围的数字会导致溢出。即使升级到long long,面对阶乘、大数幂运算,也会瞬间 “力不从心”。而高精度算法,能像人类手算一样,逐位处理数字,轻松应对天文数字!
二、高精度算法核心原理:化整为零
高精度的核心思路很简单:把大数字拆成多个小单元。比如计算 123456789 + 987654321,我们不用一个变量硬扛,而是用数组按位存储,从个位开始逐位相加,逢十进一。
1. 数据结构设计
#include <vector>
using namespace std;
// 用vector模拟数组,存储高精度数字(逆序存储方便计算)
vector<int> a, b;
这里用vector动态数组存储数字,逆序存储(个位在a[0],最高位在a.back())是为了方便从低位开始计算。
2. 高精度加法实现
vector<int> add(vector<int> &a, vector<int> &b) {
if (a.size() < b.size()) return add(b, a); // 保证a更长
vector<int> c;
int t = 0; // 进位
for (int i = 0; i < a.size(); i++) {
t += a[i];
if (i < b.size()) t += b[i];
c.push_back(t % 10);
t /= 10;
}
if (t) c.push_back(t); // 处理最高位进位
return c;
}
代码解释:
- 先确保a数组长度不小于b,方便统一处理。
- 遍历数组,逐位相加并处理进位,结果存入c数组。
- 最后检查最高位是否还有进位,有的话直接追加到c末尾。
3. 输入输出处理
#include <iostream>
#include <string>
int main() {
string s1, s2;
cin >> s1 >> s2;
// 将字符串转换为vector<int>
for (int i = s1.size() - 1; i >= 0; i--) a.push_back(s1[i] - '0');
for (int i = s2.size() - 1; i >= 0; i--) b.push_back(s2[i] - '0');
auto c = add(a, b);
// 输出结果(注意逆序)
for (int i = c.size() - 1; i >= 0; i--) cout << c[i];
return 0;
}
这里先将输入的字符串逆序转换为vector<int>,调用add函数计算后,再逆序输出结果。
三、实战演练:洛谷 P1601 A+B Problem(高精)
题目链接:https://www.luogu.com.cn/problem/P1601题目描述:输入两个高精度整数,输出它们的和。
解题思路:直接套用上述高精度加法模板!
#include <iostream>
#include <vector>
#include <string>
using namespace std;
vector<int> add(vector<int> &a, vector<int> &b) {
// 同上,省略重复代码
}
int main() {
string s1, s2;
cin >> s1 >> s2;
vector<int> a, b;
for (int i = s1.size() - 1; i >= 0; i--) a.push_back(s1[i] - '0');
for (int i = s2.size() - 1; i >= 0; i--) b.push_back(s2[i] - '0');
auto c = add(a, b);
for (int i = c.size() - 1; i >= 0; i--) cout << c[i];
return 0;
}
提交代码,轻松 AC!
四、进阶挑战:高精度乘法
高精度乘法比加法复杂一些,需要用到模拟竖式乘法的思路。关键代码如下:
vector<int> mul(vector<int> &a, int b) {
vector<int> c;
int t = 0;
for (int i = 0; i < a.size() || t; i++) {
if (i < a.size()) t += a[i] * b;
c.push_back(t % 10);
t /= 10;
}
while (c.size() > 1 && c.back() == 0) c.pop_back(); // 去除前导0
return c;
}
这里b是一个普通整数,实现a与b的乘法,通过逐位相乘并累加进位来计算结果。
总结
掌握高精度算法,相当于给 C++ 装上了 “数字外挂”!从加法、乘法到减法、除法,只要灵活运用数组模拟和逐位运算,再大的数字也能轻松拿捏。下次遇到 “大数难题”,别再让int背锅,用高精度算法秀出你的实力吧!
互动时刻:你还遇到过哪些用高精度算法解决的有趣题目?评论区分享,一起 “卷” 起来!