ElasticSearch导读

ElasticSearch


简介:ElasticSearch简称ES是一个开源的分布式搜素和数据分析引擎。使用Java开发并且是当前最流行的开源的企业级搜索引擎,能够达到近实时搜索,它专门设计用于处理大规模的文本数据和实现高性能的全文搜索。它基于 Apache Lucene 构建,专为处理海量数据而设计。它支持全文搜索、结构化查询、数据分析,并广泛应用于日志管理(如 ELK Stack)、电商搜索、实时监控等场景。

基本概念

术语说明
索引(Index)类似数据库中的“表”,存储相关文档(如 user_index)。
文档(Document)索引中的基本数据单元,格式为 JSON(如一条用户信息)。
分片(Shard)索引被分割成的子部分,支持分布式存储和并行计算。
节点(Node)一个运行中的 Elasticsearch 实例,多个节点组成集群(Cluster)。

ELK技术栈

Elasticsearch结合Kibana、Logstash、Beats,也就是elastic stack(ELK)。被广泛应用在日志数据分析,实时监控等领域:

核心组件

组件功能配图示意(文字描述)
LogstashBeats数据采集与处理:从多种来源(如日志文件、数据库)收集数据,过滤并格式化后传输到 Elasticsearch。[输入] → Logstash(过滤/转换) → [输出]
Elasticsearch数据存储与检索:分布式存储处理后的数据,支持快速搜索和分析。[数据存储] → Elasticsearch(索引/分片)
Kibana数据可视化:通过图表、仪表盘展示 Elasticsearch 中的数据。Kibana ← [查询] → Elasticsearch

总结:ELK 技术栈通过 Logstash/Beats(采集)→ Elasticsearch(存储)→ Kibana(可视化) 实现数据全生命周期管理,适用于日志分析、运维监控等场景。学习时需掌握各组件配置和协同工作原理。

Elasticsearch和lucene之间的关系

说的专业一点:Elasticsearch 基于 Apache Lucene(高性能全文检索引擎库)构建,核心的索引和搜索功能由 Lucene 实现。

说的通俗一点:Lucene 是“发动机”,专注单机性能Elasticsearch 是“整车”,集成发动机并添加了方向盘、底盘(分布式、易用性)

总结:Elasticsearch = Lucene + 分布式 + 易用接口 + 高级功能(如聚合、近实时搜索)。

索引

两个基本概念:

文档(Document):文档是 Elasticsearch 中 最小的数据存储单元,类似于 Excel 表格中的一行数据,但更灵活。

词条(Term):词条是文档内容经过 分词处理 后的最小单位,是搜索引擎操作的基本元素。

文档与词条的关系:

维度文档(Document)词条(Term)
角色数据存储的基本单位(“完整信息包”)搜索的基本单位(“信息碎片”)
存储方式原始 JSON 格式,保存在索引(Index)中分词后存储在反向索引(Inverted Index)中
操作目标用于增删改查完整数据用于快速检索和匹配内容

正向索引:正向索引是 以文档为中心 的索引结构,记录每个文档包含哪些关键词(类似书的目录,告诉你每本书里有什么内容)。

反向索引:反向索引是 以关键词为核心 的索引结构,记录每个关键词出现在哪些文档中(类似词典的索引页,告诉你哪个词在哪本书出现)。

正向索引VS反向索引

正向索引反向索引
核心逻辑文档→关键词(书→内容)关键词→文档(词典→书页)
搜索效率慢(需遍历所有文档)快(直接查关键词对应的文档)
存储空间较小较大(需存储词频、位置等额外信息)
典型应用早期搜索引擎、小规模系统现代搜索引擎(Google/Bing)、大数据系统

Mysql与ElasticSearch

  • ES 适合全文搜索和实时分析(如日志、商品搜索)。

  • MySQL 适合强事务和高一致性的业务(如支付、订单)。

  • 实际项目中常结合使用(如 MySQL 存储业务数据,ES 提供搜索服务)。

python+opencv简谱识别音频生成系统源码含GUI界面+详细运行教程+数据 一、项目简介 提取简谱中的音乐信息,依据识别到的信息生成midi文件。 Extract music information from musical scores and generate a midi file according to it. 二、项目运行环境 python=3.11.1 第三方库依赖 opencv-python=4.7.0.68 numpy=1.24.1 可以使用命令 pip install -r requirements.txt 来安装所需的第三方库。 三、项目运行步骤 3.1 命令行运行 运行main.py。 输入简谱路径:支持图片或文件夹,相对路径或绝对路径都可以。 输入简谱主音:它通常在第一页的左上角“1=”之后。 输入简谱速度:即每分钟拍数,同在左上角。 选择是否输出程序中间提示信息:请输入Y或N(不区分大小写,下同)。 选择匹配精度:请输入L或M或H,对应低/中/高精度,一般而言输入L即可。 选择使用的线程数:一般与CPU核数相同即可。虽然python的线程不是真正的多线程,但仍能起到加速作用。 估算字符上下间距:这与简谱中符号的密集程度有关,一般来说纵向符号越稀疏,这个值需要设置得越大,范围通常在1.0-2.5。 二值化算法:使用全局阈值则跳过该选项即可,或者也可输入OTSU、采用大津二值化算法。 设置全局阈值:如果上面选择全局阈值则需要手动设置全局阈值,对于.\test.txt中所提样例,使用全局阈值并在后面设置为160即可。 手动调整中间结果:若输入Y/y,则在识别简谱后会暂停代码,并生成一份txt文件,在其中展示识别结果,此时用户可以通过修改这份txt文件来更正识别结果。 如果选择文件夹的话,还可以选择所选文件夹中不需要识别的文件以排除干扰
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值