滑动窗口最值【单调队列】


今天用 数组模拟单调队列来解决 滑动窗口求最值的问题

以f[i]表示以i结尾的窗口的最小值。
f[i]=min(a[j])

  • 暴力算法的时间复杂度是O( n 2 n^2 n2
    这样的枚举时间复杂度太高,因此我们学习怎么用单调队列来优化

单调队列

单调队列不同于普通队列,可以从队尾进队出队,对头出队(维护子序列的单调性

  • 1.队尾出队的条件:队列不空并且新元素更优,队中旧元素出队。
  • 2.每个元素必然从队尾进队一次。
  • 队头出队的条件:队头元素划出了窗口。
    注意:队列中存储元素的下标,方便判断队头出队。

滑动窗口模拟

下面来模拟这个过程:
先定义两个指针h=1,t=0,相当于清空队列

//维护窗口最小值
int h=1,t=0;
for(int i=1;i<=n;i++)//枚举序列
{
	while(h<=t&&a[q[t]]>=a[i])
	t--;//队尾出队,队列不空且新元素更优
	q[++t]=i;//队尾入队,储存下标方便判断队头出队
	if(q[h]<i-k+1)//队头出队,队头元素滑出窗口
	h++;
	if(i>=k)//使用最值
	cout<<a[q[h]]<<" ";
}

每个元素进队和出队各一次,时间复杂度为O(n).

题目练习

来一道板子题练练手吧!
题目来源:P1886 滑动窗口 /【模板】单调队列

P1886 滑动窗口 /【模板】单调队列

题目描述

有一个长为 n n n 的序列 a a a,以及一个大小为 k k k 的窗口。现在这个从左边开始向右滑动,每次滑动一个单位,求出每次滑动后窗口中的最大值和最小值。

例如,对于序列 [ 1 , 3 , − 1 , − 3 , 5 , 3 , 6 , 7 ] [1,3,-1,-3,5,3,6,7] [1,3,1,3,5,3,6,7] 以及 k = 3 k = 3 k=3,有如下过程:

窗口位置 最小值 最大值 [1   3  -1] -3   5   3   6   7  − 1 3  1  [3  -1  -3]  5   3   6   7  − 3 3  1   3 [-1  -3   5]  3   6   7  − 3 5  1   3  -1 [-3   5   3]  6   7  − 3 5  1   3  -1  -3  [5   3   6]  7  3 6  1   3  -1  -3   5  [3   6   7] 3 7 \def\arraystretch{1.2} \begin{array}{|c|c|c|}\hline \textsf{窗口位置} & \textsf{最小值} & \textsf{最大值} \\ \hline \verb![1 3 -1] -3 5 3 6 7 ! & -1 & 3 \\ \hline \verb! 1 [3 -1 -3] 5 3 6 7 ! & -3 & 3 \\ \hline \verb! 1 3 [-1 -3 5] 3 6 7 ! & -3 & 5 \\ \hline \verb! 1 3 -1 [-3 5 3] 6 7 ! & -3 & 5 \\ \hline \verb! 1 3 -1 -3 [5 3 6] 7 ! & 3 & 6 \\ \hline \verb! 1 3 -1 -3 5 [3 6 7]! & 3 & 7 \\ \hline \end{array} 窗口位置[1   3  -1] -3   5   3   6   7  1  [3  -1  -3]  5   3   6   7  1   3 [-1  -3   5]  3   6   7  1   3  -1 [-3   5   3]  6   7  1   3  -1  -3  [5   3   6]  7  1   3  -1  -3   5  [3   6   7]最小值133333最大值335567

== 输入格式==

输入一共有两行,第一行有两个正整数 n , k n,k n,k
第二行 n n n 个整数,表示序列 a a a

输出格式

输出共两行,第一行为每次窗口滑动的最小值
第二行为每次窗口滑动的最大值

输入 #1

8 3
1 3 -1 -3 5 3 6 7

== 输出 #1==

-1 -3 -3 -3 3 3
3 3 5 5 6 7

== 说明/提示==

【数据范围】
对于 50 % 50\% 50% 的数据, 1 ≤ n ≤ 1 0 5 1 \le n \le 10^5 1n105
对于 100 % 100\% 100% 的数据, 1 ≤ k ≤ n ≤ 1 0 6 1\le k \le n \le 10^6 1kn106 a i ∈ [ − 2 31 , 2 31 ) a_i \in [-2^{31},2^{31}) ai[231,231)

#include <bits/stdc++.h>
using namespace std;
const int N = 1e6 + 6;
int n, k, a[N], q[N];
//q[N]队列存储的是下标

int main() {
	cin >> n >> k;
	for (int i = 1; i <= n; i++)
		cin >> a[i];
	int r = 0, l = 0;//找每个窗口最小值
	for (int i = 1; i <= n; i++) {
		while (l <= r && i - k + 1 > q[l])//队首元素不在窗口内
			l++;
		while (l <= r && a[q[r]] >= a[i])//队尾元素大于等于当前元素
			r--;
		q[++r] = i;//将当前元素下标加入队列
		if (i >= k)//窗口形成后输出
			cout << a[q[l]] << " ";
	}
	cout << endl;
	r = 0, l = 0;//找每个窗口最大值
	for (int i = 1; i <= n; i++) {
		while (l <= r && i - k + 1 > q[l])
			l++;
		while (l <= r && a[q[r]] <= a[i])
			r--;
		q[++r] = i;
		if (i >= k)
			cout << a[q[l]] << " ";
	}
	return 0;
}

连续子序列最大和

题目描述
给出一个长度为n的整数序列,找出长度不超过m的连续子序列最大和。
**可以把数组先转化为前缀和数组,再用滑动窗口找相应范围【i-m,i-1】内的最小值即可。
单调队列操作

1.队头出队:h++
2.队尾入队:t++
先删后插 t–;++t;
直接插入 ++t;

h=0,t=0;
q[0]=0,ans=s[1];
for(int i=1;i<=n;i++)
{
	//q[h]不在窗口[i-m,i-1]内,队头出队
	if(h<=t&&q[h]<i-m)h++;
	//使用队头最小值
	ans=max(ans,s[i]-s[q[h]]);
	//当前值小于等于队尾值,队尾出队
	while(h<=t&&s[i]<=s[q[t]])t--;
	//下标入队,便于队头出队
	q[++t]=i;
}
cout<<ans<<" ";
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值