前言
“从前有座山,山上有座庙,庙里有个老和尚讲故事,讲的故事是——从前有座山......’’
递归,个人拙见,一种能极大程度优化代码的思想,其主要的实现方式是函数的重复调用,关键的思想是忽略中间过程,只考虑开始和结尾。
由于本人初见递归,若有错误和不足,欢迎指出。
一、原理
个人理解,如果把一个n次的递归看作 f(n),那么这个递归函数需要满足以下三个方面:
首先,作为一个递归的开始,需要保证 f(1)可以实现,这样整个递归过程才会开始进行。
其次,忽略中间过程,需要保证 f(n-1)可以实现。
最后,为了最终实现 f(n),需要保证 f(n-1)的发生会导致 f(n)的发生。
拿前言中的小故事(?)举例,f(1)可以是“从前有座山,山上有座庙”,f(n-1)可以是“老和尚”,然后只要保证“老和尚讲故事”,即 f(n-1)可以导致 f(n),那么这个递归就会进行下去。
二、例题
1.斐波那契(Fibonacci)数列
#include <stdio.h>
int f(int n)
{
// f(1)可以实现
if (n == 0)
{
return 0;
}
if (n == 1)
{
return 1;
}
// f(n-1) -> f(n)
if (n > 1)
{
return f(n - 2) + f(n - 1);
}
}
int main()
{
for (int i = 0; i < 50; i++)
{
printf("%d ", f(i));
if (i % 5 == 0)
{
printf("\n");
}
}
return 0;
}
斐波那契数列,0,1,1,2,3,5,8......前三位为0,1,1,之后每一位为前两位数之和。
这里,f(n)所表示的过程为前两位数相加。
按照上述原理,我们需要先保证 f(1)可以实现,即当n=0和n=1的情况。之后,由