- 博客(50)
- 收藏
- 关注
原创 行列式的本质定义(第一讲)
首先我们的行列式描述的是向量组成的体积,那什么情况下我们的体积为0呢?很显然第一种情况就是有边是0吧,一旦有一条边是0也就是说有一个向量是0,那么其组成的体积必然为0对吧。除了这种情况我们其实还能想到另一种情况就是两条边重合了,也就是一个边是另一条边的倍数,有一个边和另一个边是重合的,这样的话体积显然也是0。我们要注意的是,所谓的主对角线减辅对角线只是二阶行列式计算的巧合而已,并不能推广到更高阶的行列式(当然更高阶也不会只有俩对角线了),而本质的测度属性却是可以推广的。
2025-06-12 08:00:00
64
原创 依存句法分析
通过 4 种动作(Shift、Left - Arc、Right - Arc、Reduce),让每个词要么找到自己的 “老大”(支配它的词),要么成为别人的 “老大”,最终拼出句子的依存关系。(根据词的关系、语法规则等打分)—— 比如 “打断” 和 “声” 的连线,比 “打断” 和 “我” 的连线更靠谱,分数就更高。(比如 “打断” 是核心,连着眼 “声”“了”“沉思”,“脚步” 跟着 “声”,“我” 跟着 “的” 再跟着 “沉思”)。(比如 “猫→小” 表示 “小” 的老大是 “猫”)。
2025-06-11 15:54:46
755
原创 句法分析 自然语言处理
句法分析(syntactic parsing)的任务就是 识别句子的句法结构(syntactic structure)。短语结构分析(Phrase parsing):完全句法分析(Full parsing) 局部句法分析(Partial parsing)依存句法分析(Dependency parsing)
2025-06-11 13:16:41
616
原创 零基础入门 线性代数
各位都有对象嘛?如果没有对象,想不想知道你们的天命之人是谁捏?如果有对象的话,想不想知道你们是否能走到最后呢?我相信大家的回答都是肯定的,但是我们怎么知道什么是天命呢?
2025-06-10 11:40:19
503
原创 马尔可夫模型 自然语言处理
有一类很重要的随机变化过程,比如一个系统有很多种可能的“状态”(就像开关有“开”和“关”两种状态,或者天气有“晴”“雨”“阴”等状态),这些状态会随着时间变化,从一个状态转移到另一个状态。可以想象成系统的“身份”或“模式”,比如“状态1”“状态2”……“状态N”(N是状态总数)。:用q_t表示“在时间t时系统处于什么状态”,比如 q_1是“第1时刻的状态”,q_2是“第2时刻的状态”。:重点是,当前时刻的状态概率取决于之前所有时刻的状态。
2025-06-08 12:08:42
977
原创 自然语言处理 目录篇
基本上期末考试内容就是这些啦(持续更新),本专栏适用于 纯小白\啥也没听的大学牲\想要了解相关知识但是奈何论文全是鬼话看不懂的 各位(嘻嘻)
2025-06-07 16:33:43
272
原创 解决虚拟机挂起之后的网络问题
在VM(虚拟机)操作中,不小心点击“挂起”后导致网络连接中断是常见问题。本文提供了一种简单的解决方案,通过执行特定命令来恢复网络连接。
2025-05-10 19:24:48
294
原创 每日一练 寻找两个正序数组的中间数
首先,我们应该想到的一种方法是把两数组合并为一个整体的数组,然后返回其中位数即可。那么我们如何合并两数组呢?首先,我们要注意,我们只是想要找这两数组的中位数,其实并不需要把整个的数组全都和起来,我们只需要找到数组的中位数所在的位置即可,其次,我们的搜寻方法能否优化呢?我们只需要设置进入数组的长度即可,即若其中一个已经全部进入数组,那么直接把另一个数组的剩余所有数全进入即可。下面是解题思路:( 作者:windliang 来源:力扣(LeetCode))显然,若其中一个为空,我们直接判断另一个的中位数即可。
2024-04-05 12:20:06
387
原创 每日一练 找无重复字符的最长子串
问题出在当我们的右窗无法重置位置,就有可能出现右窗在左窗左边的情况,在这种情况下,我们如何能让右窗重新“归位”,保证右窗与左窗的联系呢?实际上,我们把退出左窗放在下一次循环里,循环中我们开始便退出上一次的左窗,这样的话我们可以发现,我们的右窗会保证跟在左窗后最终实现归位。我们的左窗代表我们目前遍历的开始,即我们遍历的子串的开头,右窗从左窗开始进行遍历,每次遍历都把当前的字符放入组内,遇到重复则退出计算此时的子串长度,接下来左窗加1继续遍历。在java中,我们可以用hashset来做这种重复筛查。
2024-03-30 13:43:07
653
原创 每日一练 两数相加问题(leetcode)
第一,加的太“多”了,什么叫加多了呢,就是我们的和超过9了,这样的话显然我们要进行进位,我们进位后的那个数等于什么呢?显然是等于我们的和取余10,那么怎么表示我们后面一个要进位加1呢?那么我们之后的和其实等于l1+l2+进位指针的值,综合起来我们一开始把进位指针设为0,那么我们所有的和都可以为l1+l2+进位指针的值。这道题目是一道链表题,我们对于这种链表类,很显然我们最后输出的是初始节点,所以我们要保留我们的初始头指针,那么我们的第一步一定是把头指针保留一份,然后再让头指针往后进行操作。
2024-03-29 22:02:17
863
原创 2.4 比较检验 机器学习
接我们的上一篇《性能度量》,那么我们在某种度量下取得评估结果后,是否可以直接比较以评判优劣呢?实际上是不可以的。因为我们第一,测试性能不等于泛化性能,第二,测试性能会随着测试集的变化而变化,第二,很多机器学习算法本身有一定的随机性,即便用相同参数设置在同一测试集上其结果也会不同所以直接选取相应评估方法在相应度量下比大小的方法不可取。
2024-03-28 14:16:11
1884
原创 3.3 数据定义 数据库与系统概论
SQL中,模式定义语句如下:CREATE SCHEMA AUTHORIZATION [例3.1] 为用户WANG定义一个学生-课程模式S-T如果语句没有指定,隐含为[例3.2] CREATE SCHEMA AUTHORIZATION WANG;要创建模式,调用该命令的用户必须拥有数据库管理员权限,或获得了数据库管理员授予CREATE SCHEMA 的权限。定义模式实际上定义了一个命名空间。在这个空间中可以定义该模式包含的数据库对象。
2024-03-25 20:00:12
1383
原创 3.2 学生-课程 数据库
学生表:Student (Sno, Sname, Ssex, Sage, Sdept) 课程表:Course (Cno, Cname, Cpno, Ccredit) 学生选课表:SC (Sno, Cno, Grade)Student表:学生表:Student (Sno, Sname, Ssex, Sage, Sdept)课程表:Course (Cno, Cname, Cpno, Ccredit)选课表:SC (Sno, Cno, Grade)
2024-03-25 16:09:00
362
原创 JAVA面向对象编程 JAVA语言入门基础
类修饰符可以是 public、abstract、final,类修饰符也可以省略类名只要是合法的标识符即可(推荐驼峰规则)类体可以由属性、方法、构造方法组成语法格式:[修饰符] 属性类型 属性名 [= 默认值];修饰符包括:public、private、protected、final、static 等属性类型可以是基本数据类型或者引用数据类型属性名遵守驼峰规则(第一个单词首字母小写,后面每个单词首字母大写)默认值可以是基本数据类型字面值,也可以是对象用static关键字修饰的属性被称为类属性。
2024-03-24 22:13:13
905
原创 3.1 SQL概述
SQL(Structured Query Language) 结构化查询语言,是关系数据库的标准语言SQL是一个通用的、功能极强的关系数据库语言功能:查询,数据库模式创建,数据库数据的插入与修改,数据库完整性、安全性定义等应用发展:数据库厂家推出各种SQL软件及其接口软件,使得大多数数据库均使用SQL作为共同的数据存取语言和标准接口。
2024-03-24 16:00:39
1109
原创 JAVA基础 数组,字符串与正则表达式
方式1:Type[] a={a_1, …, a_n};方式2:Type[] a=new Type[n]{a_1, …, a_n};方式3:Type[] a=new Type[n];数组元素的。
2024-03-18 20:27:27
1124
原创 2.3 性能度量
对学习器的泛化性能进行评估,不仅需要有效可行的实验估计方法,还需要有衡量模型泛化能力的评价标准,这就是.性能度量反映了任务需求,在对比不同模型的能力时,使用不同的性能度量往往会导致不同的评判结果;这意味着模型的“好坏”是,什么样的模型是好的,不仅取决于算法和数据,还决定于.在预测任务中,给定样例集D= {(1,31),(2,32),. . . , (m, Jm)},其中 yi是示例ax;的真实标记.要评估学习器的性能,就要把学习器预测结果f(z)与真实标记y进行比较。
2024-03-17 19:00:11
1014
原创 流程控制 JAVA语言基础
我们从最简单的单路选择开始,符合条件的进入语句序列,不符合条件的跳出执行接下来的代码。倘若我们不符合条件的要进行的操作是要和接下来的代码不一样,那么我们就用else来进行接下来的语句块。for循环,表达式一为初始表达式,条件表达式判断是否进入循环体为限制条件,表达式二一般是对表达式的变量进行改变,从而让其靠近限制条件。从键盘上输入从键盘上输入一个月份,判断该月份的天数(假设不是闰年)一个月份,判断该月份的天数(假设不是闰年)首先斐波那契数列的规律是后一个数是前两个数的和,我们能用循环的方法构造此规律。
2024-03-14 15:40:03
524
原创 2.4 关系代数 数据库系统概论
关系代数是一种抽象的查询语言,它用对关系的运算来表达查询。。是从关系的“水平”方向,即。不仅。比较运算符和逻辑运算符用来辅助专门的关系运算符进行操作。
2024-03-12 22:16:01
1130
原创 2.3 关系的完整性 数据库系统概论
任何关系数据库系统必须支持实体完整性和参照完整性(两个不变性)。用户定义的完整性:针对某一具体关系数据库的约束条件,反映某一具体应用所涉及的数据必须满足的语义要求。关系模型应提供定义和检验这类完整性的机制,以便用统一的系统的方法处理它们,而不需由应用程序承担这一功能。
2024-03-12 19:35:38
1073
原创 2.2 关系操作
选择、投影、连接、除、并、差、交、笛卡尔积(后面章节会详细讲)选择、投影、并、差、笛卡尔积是5种基本操作,其他操作可以用基本操作来定义和导出。插入、删除、修改。
2024-03-11 21:50:20
489
原创 2.1 关系数据结构及形式化定义 数据库概论
关系模式(Relation Schema)是型,关系是值,关系模式是对关系的描述。关系模式应当描述的内容元组集合的结构:属性构成,属性来自的域,属性与域之间的映象关系。完整性约束条件。关系的描述称为关系模式,关系模式可以形式化地表示为R 关系名U 组成该关系的属性名集合D U中属性所来自的域DOM 属性向域的映象集合F 属性间数据的依赖关系的集合关系模式通常可以简记为:R (U) 或 R (A1,A2,…,An ),R: 关系名,A1,A2,…,An : 属性名。
2024-03-11 21:05:59
1513
原创 JAVA语言基础 JAVA入门
注释:用双斜线 // 表示:用 /*------------------*/ 表示:用 /**-----------------*/ 表示分隔符在 Java 语言中每一条语句都用分号结束标识符的规则由组成。作为标识符,Jjava的标识符。
2024-03-07 21:26:24
926
原创 2.1 经验误差与过拟合 机器学习
但是倘若一个学习器在训练样本上几乎完美,那么这是否是一个我们需要的模型呢?实际上,这样的模型往往不是我们所需要的。因为请注意,我们所需要的是在新样本下依然能良好适配的学习器。在训练样本上训练过好的学习器,很有可能把训练模型的自身特性当成了我们的普遍存在的所有潜在样本的一般性质。当我们遇到新样本时,倘若我们的学习器过拟合,会把叶子上的锯齿误认为叶子的普遍特征,这样就导致没有锯齿的叶子不是树叶。显然,我们需要泛化误差较小的模型。通常我们把分类错误的样本数占样本总数的比例称为。相应的,1-a/m称为。
2024-03-05 10:45:42
779
原创 1.4 数据库系统的组成
1. 决定数据库中的信息内容和结构 2. 决定数据库的存储结构和存取策略 3. 定义数据的安全性要求和完整性约束条件 4.监控数据库的使用和运行(周期性转储数据库(数据文件/日志文件),系统故障恢复,介质故障恢复,监视审计文件)5. 数据库的改进和重组(性能监控和调优,定期对数据库进行重组织,以提高系统的性能;数据库系统的软件主要有:数据库管理系统,支持数据库管理系统运行的操作系统,与数据库接口的高级语言及其编译系统,以数据库管理系统为核心的应用开发工具,为特定应用环境开发的数据库应用系统。
2024-03-04 22:02:55
592
原创 1.3 数据库系统的结构
数据库模式:即全局逻辑结构是数据库的中心与关键;独立于数据库的其他层次;设计数据库模式结构时应首先确定数据库的逻辑模式。
2024-03-04 21:09:48
1100
原创 1.2 数据模型 数据库系统概论
如果对于实体集A中的每一个实体,实体集 B中至多有一个(也可以没有)实体与之联系, 反之亦然,则称实体集A与实体集B具有一对一联系,记为1:1。
2024-03-03 20:48:14
1199
原创 1.4 归纳偏好 机器学习
若仅有表1.1中的训练样本,则无法断定上述三个假设中哪一个“更好”.然而,对于一个具体的学习算法而言,它必须要产生一个模型.这时,学习算法本身的“偏好”就会起到关键的作用.例如,若我们的算法喜欢“尽可能特殊”的模型,则它会选择“好瓜→(色泽= *)∩(根蒂=蜷缩)∩(敲声=浊响)”;通过学习得到的模型对应了假设空间中的一个假设.于是,西瓜版本空间给我们带来一个麻烦:现在有三个与训练集一致的假设,但与它们对应的模型在面临新样本的时候,却会产生不同的输出.例如,对(色泽=青绿;“什么样的模型更好”
2024-02-29 11:20:09
683
原创 1.3 假设空间 机器学习
即能够将训练集中的瓜判断正确的假设.假设的表示一旦确定,假设空间及其规模大小就确定了。注意,我们的假设空间包括色泽,根,敲声的所有不同排列和组合,当然包括没有出现在数据集中的组合。需注意的是,现实问题中我们常面临很大的假设空间,但学习过程是基于有限样本训练集进行的,因此,可能有多个假设与训练集一致,即。我们在假设空间中进行搜索,搜索过程中可以不断删除与正例不一致的假设、和(或)与反例一致的假设.最终将会获得。从特殊到一般的“泛化”过程,即从具体的事实归结出一般性规律。的假设,这就是我们学得的结果.
2024-02-29 08:27:08
643
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人