RDD有哪几种创建方式

RDD(弹性分布式数据集)有以下几种常见的创建方式:

 

### 从集合创建

通过`parallelize()`方法将本地集合转换为RDD。这种方式适合在测试或处理小规模数据时使用,它能将本地的Python列表、Java数组等集合数据并行化到集群上。

- **Python示例**:

```python

from pyspark import SparkContext

 

# 创建SparkContext对象

sc = SparkContext("local", "CreateRDDExample")

data = [1, 2, 3, 4, 5]

# 使用parallelize方法将列表转换为RDD

rdd = sc.parallelize(data)

print(rdd.collect())

sc.stop()

```

- **Java示例**:

```java

import org.apache.spark.SparkConf;

import org.apache.spark.api.java.JavaRDD;

import org.apache.spark.api.java.JavaSparkContext;

import java.util.Arrays;

import java.util.List;

 

public class CreateRDDFromCollection {

    public static void main(String[] args) {

        SparkConf conf = new SparkConf().setAppName("CreateRDDFromCollection").setMaster("local");

        JavaSparkContext sc = new JavaSparkContext(conf);

        List<Integer> data = Arrays.asList(1, 2, 3, 4, 5);

        // 使用parallelize方法将列表转换为RDD

        JavaRDD<Integer> rdd = sc.parallelize(data);

        System.out.println(rdd.collect());

        sc.close();

    }

}

```

 

### 从外部存储系统创建

可以从多种外部存储系统中读取数据来创建RDD,这些存储系统包括但不限于本地文件系统、Hadoop分布式文件系统(HDFS)、Amazon S3等。

- **读取本地文件**:

```python

from pyspark import SparkContext

 

sc = SparkContext("local", "ReadLocalFileExample")

# 读取本地文件创建RDD

rdd = sc.textFile("file:///path/to/local/file.txt")

print(rdd.take(5))

sc.stop()

```

- **读取HDFS文件**:

```python

from pyspark import SparkContext

 

sc = SparkContext("local", "ReadHDFSFileExample")

# 读取HDFS文件创建RDD

rdd = sc.textFile("hdfs://namenode:port/path/to/hdfs/file.txt")

print(rdd.take(5))

sc.stop()

```

 

### 从其他RDD转换创建

通过对已有的RDD执行转换操作(如`map`、`filter`、`flatMap`等),可以生成新的RDD。这些转换操作是惰性的,不会立即执行,只有在遇到行动操作时才会触发计算。

```python

from pyspark import SparkContext

 

sc = SparkContext("local", "TransformRDDExample")

data = [1, 2, 3, 4, 5]

rdd1 = sc.parallelize(data)

# 对rdd1进行map转换操作,生成新的RDD

rdd2 = rdd1.map(lambda x: x * 2)

print(rdd2.collect())

sc.stop()

``` 

基于机器学习的音频情感分析系统Python源码(高分项目),能够从语音中识别出四种基本情感:愤怒、快乐、中性和悲伤。个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做毕业设计的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统P
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值