对于处理语料库任务,在 R 和 Python 中都有很多强大的库可以帮助您进行文本分析、自然语言处理(NLP)以及统计建模等工作。下面是一些常用库的简介以及它们的主要用途:
Python 相关库
-
NLTK (Natural Language Toolkit)
- 简介:NLTK 是一个领先的平台,用于构建 Python 程序来处理人类语言数据。它提供了易于使用的接口,可用于超过 50 种语料库和词汇资源,以及一组文本处理库用于词干化、标记化、词性标注、句法分析、分类、语义推理等。
- 示例代码: python
深色版本
1import nltk 2from nltk.corpus import stopwords 3from nltk.tokenize import word_tokenize 4 5text = "This is an example sentence for tokenization." 6tokens = word_tokenize(text) 7print(tokens)
-
spaCy
- 简介:spaCy 是一个非常高效的工业级 NLP 库,它支持多种语言,并且有很好的文档和社区支持。它提供了词性标注、命名实体识别、依存句法分析等功能。
- 示例代码: python
深色版本
1import spacy 2 3nlp = spacy.load("en_core_web_sm") 4doc