- 博客(9)
- 收藏
- 关注
原创 傅里叶变换:信号频率的魔法解码(附Python可视化代码)
傅里叶变换是一种将信号从时域转换到频域的数学工具,能够将复杂信号分解为不同频率的正弦波组合。其核心包括连续傅里叶变换(CFT)和离散傅里叶变换(DFT),后者通过快速傅里叶变换(FFT)算法实现高效计算。傅里叶变换在信号处理、图像分析、数据压缩等领域有广泛应用。文中还提供了Python代码示例,通过交互式界面可视化傅里叶变换过程,包括手绘信号输入、采样密度调节等功能,帮助直观理解这一重要数学概念。
2026-01-10 15:40:00
924
原创 2026新年贺词:当代码有了温度,未来正在敲门
当这篇文字穿越网络抵达你的屏幕时,我们正一同站在2026年的门槛上。这不是一次简单的年份更迭,而是一个时代的加速转弯。请允许我用这一方数字空间,与你共同回望那个刚刚落幕的2025年——这一年,技术不再是遥远的预言,而是变成了我们呼吸的空气、思考的延伸、双手的延续。
2025-12-31 22:41:06
833
原创 PID控制核心公式与实战调参
本文介绍了PID控制的核心原理与实现方法。PID控制公式包含比例、积分和微分三个环节,通过调节Kp、Ki、Kd参数优化系统性能。文章详细说明了参数初始化策略、调参原则和Ziegler-Nichols整定法,并提供了Arduino实现示例。调试时应先调比例环节,再逐步加入积分和微分,建议参数比例约为100:10:1。文中还介绍了抗饱和处理和噪声抑制技巧,强调需满足稳定性条件,对非线性系统可采用增益调度或串级PID控制。实际调试建议使用串口绘图工具监控响应曲线。
2025-11-22 15:22:11
419
原创 闭环控制算法:从PID到LQR全解析
摘要: 本文对比了开环与闭环控制的特点,重点解析了PID控制算法的比例(P)、积分(I)、微分(D)作用原理及参数整定方法,并通过Arduino实现直流电机位置控制的实例演示了PID应用。此外,介绍了现代控制理论中的LQR(线性二次型调节器)算法,阐述其通过状态空间模型和代价函数优化实现多变量系统控制,适用于如倒立摆等复杂场景。PID简单易用但需经验调参,LQR系统性更强但依赖精确建模,两者各有适用领域。
2025-11-22 15:15:47
1137
原创 二维旋转矩阵:原理与应用全解析
本文详细介绍了二维旋转矩阵的原理与应用。首先通过三角恒等式推导出旋转矩阵公式,展示了点旋转的数学表达。接着列举了计算机图形学、机器人控制等实际应用场景,并给出了Python实现示例。最后将概念扩展到三维空间,解释了绕不同轴的旋转矩阵及其组合方式。全文脉络清晰,由浅入深,既有理论推导也有编程实现,对理解旋转矩阵这一重要数学工具具有实用指导价值。
2025-11-17 13:46:58
502
原创 终极指南:launch4j与exe4j将JAR高效转换为EXE
摘要:本文提供launch4j和exe4j两款Java转EXE工具的使用指南。launch4j操作包括配置输出路径、JAR文件、图标及Java版本要求,支持XML配置;exe4j通过图形界面设置EXE属性、主类和JRE版本范围。对比分析显示:launch4j轻量开源适合Windows,exe4j功能全面支持跨平台但需付费。两者均支持内存/界面模式配置,文章还给出了闪退、图标异常等问题的解决方案,建议根据项目需求选择工具,launch4j适合简单打包,exe4j适合复杂安装流程。
2025-10-06 15:55:40
849
原创 IDM插件开发大赛:创新下载新体验
介绍IDM(Internet Download Manager)的核心功能及其插件系统的意义,简述赛事目标(如激发创新、优化下载体验等)。列举往届赛事亮点或典型插件案例(如云存储集成、AI资源识别等)。
2025-10-06 15:33:33
262
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅