- 博客(5)
- 收藏
- 关注
原创 《图像分割项目总结》
定义与本质图像分割是将图像划分为不同的区域或类别,使得每个区域内的像素具有相似的特征,而不同区域之间具有明显的差异。本质上,它是一种基于像素级别的分类任务,通过对图像中每个像素进行分类,从而实现对目标的轮廓预测和区域划分。应用场景的广泛性人像抠图:在影视制作、广告设计和摄影后期处理等领域,人像抠图是常见的需求。通过图像分割技术,可以精确地将人物从背景中分离出来,为后续的合成、特效添加等操作提供基础。医学组织提取。
2024-10-18 14:02:53
1418
原创 《YOLOv5 源码深入总结》
YOLOv5 源码通过其精心设计的项目结构、创新的网络模块(如 Focus 模块、Bottleneck CSP 模块和 PAN 流程)、有效的数据处理技术以及合理的模型训练和评估方法,构建了一个高效、准确、泛化能力强的目标检测模型。这些技术和方法的综合应用,使得 YOLOv5 在目标检测领域取得了卓越的成就,为未来的研究和应用提供了重要的参考和借鉴。
2024-10-18 13:49:46
1470
原创 《YOLOv4 总结》
YOLOv4 通过在数据层面和网络设计层面的诸多改进,包括丰富的数据增强方法、合理的损失函数设计、优化的网络结构组件以及先进的激活函数等,在目标检测性能上取得了显著的提升,同时保持了对设备的友好性,为目标检测领域的发展提供了新的思路和方法。◦ 引入了自底向上的路径,与自顶向下的 FPN 相结合,使得底层信息更容易传到顶部,并且采用拼接的方式整合信息,提高了特征的传递和利用效率。◦ 参考 CutMix 方法,将四张图像拼接成一张进行训练,增加了数据的多样性和复杂性,有助于模型学习到更全面的特征。
2024-10-12 19:21:54
540
原创 《YOLOv3 总结》
以 416×416 的输入为例,经过网络处理后,在 13×13 的网格上进行预测,输出维度为 13×13×3+(4+1+80),其中 3 表示每个网格有 3 个先验框,4 表示边框坐标,1 表示边框置信度,80 表示对象类别数;通过这种多尺度的预测方式,能够更全面地检测不同大小的物体。YOLOv3 通过网络结构的优化、先验框的丰富、softmax 的改进等多方面的措施,在目标检测性能上有了显著的提升,尤其是在小目标检测和多标签任务方面表现出了更好的适应性,进一步巩固了 YOLO 系列在目标检测领域的地位。
2024-10-12 19:20:52
709
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅
1