- 博客(54)
- 资源 (5)
- 收藏
- 关注
原创 云服务器改代码后上传仓库:不用下载到本地
摘要:本文介绍了三种在云服务器上直接推送代码到Gitee仓库的高效方法。最优方案是在服务器上直接使用Git命令推送代码(前提是已关联远程仓库),通过git add、commit、push三步完成。若遇权限问题,建议使用Gitee个人访问令牌或配置SSH免密登录。备选方案适合无Git环境的服务器,需打包下载到本地上传。进阶方案建议配置SSH密钥实现永久免密推送。核心原则是云服务器代码仓与本地仓同等地位,无需下载到本地中转,可直接与远程仓库交互。
2026-01-07 17:52:28
255
原创 子模块合并到代码仓 分支提交什么
我们使用子模块时,主项目提交的是子模块的引用(commit ID),而不是子模块的代码本身。所以,当你修改了子模块(lightrag)并提交后,需要在主项目中更新子模块的引用到最新的commit ID。然后提交主项目的更改(包括这个更新的引用)并推送到远程仓库。具体步骤如下:在子模块(lightrag)目录中提交更改并推送到其远程仓库。回到主项目,提交子模块的引用(即更新后的commit ID)。推送主项目的分支到远程仓库。下面详细说明每一步。
2026-01-06 18:04:48
473
原创 lightrag嵌入思路
│ │ └── enhanced_processor.py # 您新增的带RAG的处理器。src/ocr/processor.py # 如果修改了原文件。git add src/ocr/processor.py # 如果修改了。python test_ocr_with_rag.py # 您的测试脚本。│ │ ├── processor.py # 原有OCR代码。- 新增处理器:src/ocr/enhanced_processor.py。
2026-01-06 17:58:29
637
原创 lightrag接到已有的代码仓里面
先跑通:两个项目独立运行,排除环境坑;建分支:只在分支开发,不碰原代码;改代码:只改 OCR 函数,在文本提取后加 LightRAG 切分 + 向量化 + 存库逻辑;嵌子模块(可选):需要改 LightRAG 代码时才嵌,否则直接 pip 安装即可;传分支:只传开发分支,原仓库 main 分支不动,子模块需单独传自己的仓库。
2026-01-06 17:49:01
681
原创 LightRAG 工作流程、检索机制与知识图谱存储说明
LightRAG 的检索机制核心是「模式化 + 可配置」:基础场景用 naive/local,追求速度;通用场景用 hybrid(默认),平衡精度与覆盖;复杂推理用 mix,依赖知识图谱 + 向量融合;纯 LLM 对比用 bypass;所有模式均可通过 top_k/Rerank/令牌数 调优,适配不同数据量和精度需求。GraphRAG:是“社区驱动的图谱检索”,适合大规模知识库的宏观分析,但依赖预划分的社区结构,灵活性较弱。LightRAG:是“实体驱动的混合检索。
2026-01-06 10:28:39
746
原创 nano编辑器
Ctrl + O→ 回车确认Ctrl + X✅ 保存 + 退出 组合:先Ctrl+O→ 回车 → 再Ctrl+XCtrl+X→ 按NCtrl + UCtrl + K。
2026-01-04 14:34:50
378
原创 lightrag的检索机制
LightRAG 原生就支持将传统 RAG(基于向量/关键词的文本检索)与图谱(Graph)检索相结合。它的设计哲学并非让两者完全独立工作,而是构建一个统一的混合检索框架,旨在自动地为每次查询选出最合适的上下文信息。模式核心逻辑适用场景Naive先局部检索(精准匹配),再基于局部结果缩小范围做全局检索(串行逻辑)兼顾速度与精度的日常场景Local仅执行局部检索(基于实体/关系的精准匹配)需快速查询确定性事实的场景Global仅执行全局检索(基于语义的相似度匹配)需全面召回相关内容的场景Hybrid局部+全局
2026-01-04 14:23:05
934
原创 rag里BGE微调和大模型微调什么区别
{"instruction": "如何诊断射血分数保留的心力衰竭?", "input": "患者呼吸困难,超声显示LVEF 55%", "output": "HFpEF的诊断需满足三个条件..."},{"query": "HFrEF的诊断标准", "positive": "射血分数降低的心衰表现为LVEF<40%", "negative": "HFpEF的诊断要求LVEF不低于50%"},模型: Qwen, ChatGLM, Baichuan, LLaMA。instruction = "根据心衰指南回答"
2025-11-10 15:07:08
368
原创 给高中生讲明白:AI 是怎么 “上学” 的?
预训练是基础,让模型具备语言和知识能力;SFT是初步校准,让模型学会遵循指令;RLHF(结合奖励模型和强化学习)是深度优化,让模型符合人类偏好;PPO/DPO是实现强化学习的具体算法工具。这一流程(预训练→SFT→RLHF)已成为主流大语言模型(如 GPT、Claude 等)的标准训练范式。
2025-08-21 15:13:22
774
1
原创 给初中生讲明白:AI 是怎么 “上学” 的?
你考试的时候是不是有自己的小技巧?比如先做简单题、最后检查作文。AI 在 “冲刺班” 里也有 “答题技巧”,就是 PPO 和 DPO 这些算法。简单说,PPO 是让 AI “稳扎稳打”,每次进步一点点,别一下子改太多导致 “翻车”;DPO 更直接,相当于告诉 AI“就照着这个好例子学,不用绕弯子”。有了这些技巧,AI 能更快地学会人类喜欢的表达方式。启蒙班(预训练):狂读海量内容,打基础;提高班(有监督微调):学规矩,会答题;冲刺班(RLHF):懂人情,更贴心。现在你知道了吧?
2025-08-21 15:12:01
615
原创 Transformer 核心概念转化为夏日生活类比
摘要:Transformer模型的核心概念被巧妙类比为夏日冷饮制作流程:编码器是食材处理间,解码器是调配台;自注意力像拍西瓜判断甜度;多头注意力如多人挑瓜综合意见;位置编码是排队号码牌;掩码自注意力如同蒙眼调饮;Q/K矩阵似购物清单匹配需求;注意力分数缩放像小口喝冰水;防过拟合措施类比防晒策略。这种西瓜味的类比将复杂技术转化为生活场景,配以"冷饮线-处理编-多人挑-蒙眼看"的口诀,让模型原理变得清凉好记。
2025-06-13 19:42:30
753
原创 《Transformer 的奇妙图书馆:一场关于注意力的冒险》
图书馆里有本魔法书,上面的文字会自己调换位置。为了遵守规则,Transformer 戴上了 “掩码眼罩”(掩码自注意力):翻译 “明天” 时,眼罩会遮住 “公园” 的位置,让它只能看到已经翻好的 “我”。比如翻译 “我明天要去公园”,Transformer 必须先翻 “我”,再翻 “明天”,最后翻 “公园”,不能提前知道 “公园” 这个词。比如翻译 “国王的王冠” 时,有的侦探关注 “国王” 的词性,有的分析 “王冠” 的所属关系,最终组合出准确的译文 “the king's crown”。
2025-06-13 13:51:55
788
原创 为什么像 “仓库” 而非 “工厂”?
它的核心是通过优化的索引结构,让计算机在海量高维向量中。在高维空间中(如 1000 维向量),传统遍历搜索。,类似给仓库安装了 “向量 GPS 导航系统”。
2025-06-07 10:51:30
360
原创 RetroMAE 预训练任务
RetroMAE 通过“适度编码生成语义底座 → 激进解码强化语义关联 → 增强解码细化语义依赖”先学会提炼文本全局语义(编码阶段 );再强制从极少信息中恢复内容(解码阶段,提升语义推理 );最后精细化学习 token 间复杂依赖(增强解码阶段 )。最终目标是让模型生成更优质的文本表示,尤其适配检索任务(如 dense retrieval ),为下游应用(如文本向量检索、问答系统 )打牢预训练基础。形象的举个例子阶段 A:编码(Encoding)—— 提取故事 “核心大纲”场景。
2025-06-06 18:57:39
1073
原创 传统 P 图不可替代的五大场景
两者如同 “计算器与数学定理” 的关系 —— 计算器简化计算,但数学思维的培养和复杂问题的解决仍需人类主导。在 AI 技术的冲击下,传统 P 图工具(如 Photoshop、Lightroom 等)与 AI 驱动的智能 P 图工具(如 Lensa、Runway、Remini 等)并非完全对立,而是形成了。两者的目标用户、功能定位和应用场景存在显著差异,因此传统 P 图依然有其不可替代的价值。—— 能驾驭传统工具与 AI 技术的人,将在图像创作领域拥有更广阔的空间。AI 技术并非颠覆传统 P 图,而是。
2025-06-06 18:49:41
952
原创 基于 BGE 模型与 Flask 的智能问答系统开发实践
本文介绍了基于BGE模型与Flask框架的智能问答系统开发实践。系统采用BGE-base-zh-v1.5模型进行文本语义编码,结合Faiss实现高效向量检索,并使用Flask搭建Web服务。开发流程包括数据准备、向量编码索引构建、检索逻辑实现(粗排+精排)以及服务封装等关键步骤。该系统可实现中文语义检索功能,适用于企业客服、知识库等场景,未来可通过扩展数据规模、优化模型性能等方式进一步提升效果。
2025-06-06 10:04:01
1298
2
原创 Transformer面试题
链接:https://zhuanlan.zhihu.com/p/681195398。商业转载请联系作者获得授权,非商业转载请注明出处。
2025-06-04 13:43:06
508
原创 AI大模型介绍-BERT
BERT是由Google于2018年推出的基于Transformer架构的预训练语言模型。其核心创新在于双向编码机制,通过掩码语言模型(MLM)和下一句预测(NSP)任务进行预训练,使模型能同时利用上下文信息。BERT提供Base(12层)和Large(24层)两种版本,广泛应用于文本分类、命名实体识别、问答系统等NLP任务。模型输入包含Token、Position和Segment三种Embedding,通过微调适应不同下游任务。在GLUE等基准测试中,BERT表现优异,成为NLP领域里程碑式模型。尽管计算
2025-06-03 13:41:58
984
原创 自然语言处理核心技术:词向量(Word Embedding)解析
词向量的诞生标志着 NLP 从规则驱动迈向数据驱动,其发展历程不仅是技术的革新,更是对人类语言本质的深入探索。从早期捕捉单一语义的静态向量,到如今动态感知上下文的预训练模型,词向量已成为现代 NLP 的底层基石。未来,随着技术的持续突破,词向量将在通用人工智能(AGI)领域扮演更关键的角色,推动机器从 “理解语言” 走向 “理解世界”。相关资源推荐。
2025-05-24 10:36:04
1283
原创 自然语言处理(NLP)在影评情感分析中的处理流程示例
以影评情感分析为例,为你详细介绍自然语言处理的处理流程。在这个例子中,我们将使用 Python 和一些常用的 NLP 库,如nltk(自然语言工具包)和(机器学习库)。
2025-05-12 15:40:14
1255
原创 探秘自然语言处理:数据库、方法与知识点大揭秘
在人工智能飞速发展的今天,自然语言处理(NLP)作为让计算机理解和处理人类语言的关键技术,备受关注。无论是智能客服、机器翻译,还是信息检索,NLP 都发挥着不可或缺的作用。今天,就让我们深入了解一下 NLP 背后的数据库、方法和重要知识点。
2025-05-12 15:34:51
945
原创 从数据处理到模型训练:深度解析 Python 中的数据结构与操作实践
通过对这段代码的分析,我们可以看到,在数据处理过程中,数据结构的选择和使用至关重要。即使在某些操作阶段维度不一致的数据能够运行,但为了后续任务的顺利进行,我们必须充分理解数据结构的特点,对数据进行合理的处理和转换。同时,函数的使用为我们提供了便捷的数据划分方式,但也提醒我们要关注数据的对应关系和后续处理需求。只有扎实掌握这些基础操作和原理,才能在数据处理与机器学习的道路上稳步前行。希望以上博客内容对你有所帮助!如果你还有其他想法或修改建议,比如增减内容、调整风格等,欢迎随时告诉我。
2025-05-11 20:29:49
615
原创 从文本到语义:BERT、Faiss 与 Elasticsearch 的协同实践
BERT(Bidirectional Encoder Representations from Transformers)基于 Transformer 架构,通过掩码语言模型(MLM)和下一句预测(NSP)两个预训练任务,能够学习到文本的双向上下文信息。在 NLP 任务中,BERT 可以将文本转换为固定维度的向量表示,这些向量能够捕捉文本的语义信息,为后续的语义检索和分析提供基础。BERT、Faiss 和 Elasticsearch 的结合,为自然语言处理领域的语义搜索提供了强大的解决方案。
2025-05-10 10:19:08
1167
原创 FAISS 与机器学习、NLP 的关系
FAISS 是解决机器学习(尤其是 NLP)中大规模向量检索瓶颈的关键工具。它通过高效的近似算法和硬件优化,让语义搜索、推荐系统等应用在工业级规模下仍能保持高性能,成为现代 NLP 系统不可或缺的一部分。
2025-05-09 18:46:29
1176
原创 Faiss 索引深度解析:从基础到实战
通过以上代码示例,我们对 Faiss 的多种索引类型有了更深入的了解。在实际应用中,我们需要根据数据规模、查询效率和准确性要求等因素,选择合适的索引类型。对于小规模数据,Flat 索引可以保证准确性;对于中型数据,倒排索引是不错的选择;而处理大规模高维数据时,复合索引往往能带来更好的性能表现。此外,在使用 Faiss 时,还可以进一步调整索引参数、进行性能测试和添加更多评估指标,以优化搜索效果。如果你在实际项目中也在使用 Faiss,欢迎在评论区分享你的经验和遇到的问题,让我们共同学习进步!
2025-05-09 14:11:58
1604
原创 基于条件随机场(CRF)的词性标注实践探索
条件随机场是一种无向概率图模型,它可以在给定输入序列的条件下,对输出序列的条件概率进行建模。与其他序列模型(如隐马尔可夫模型)相比,CRF 能够充分考虑上下文信息,避免标记偏置问题,从而在序列标注任务中实现更精准的预测。在词性标注场景下,CRF 可以根据单词的上下文语境,准确判断每个单词对应的词性标签。
2025-05-07 16:04:39
1194
原创 Scala与人工智能:融合多范式编程的AI开发利器
在人工智能(AI)技术飞速发展的今天,编程语言的选择直接影响着算法实现效率与系统可扩展性。Scala,作为一门融合面向对象(OOP)与函数式编程(FP)的多范式语言,凭借其独特的设计理念和生态系统,正逐渐成为AI开发的重要工具。本文将深入探讨Scala在AI领域的核心优势、应用场景及未来趋势。
2025-04-19 09:51:28
2094
原创 深度学习与 Flask 应用常见问题解析
在深度学习和 Flask 应用开发过程中,我们常常会遇到一些关键的知识点和容易混淆的问题。下面我们就来对这些问题进行详细的解析。
2025-04-16 20:41:27
1145
原创 探索图像分类模型的 Flask 应用搭建之旅
最近深入研究了利用深度学习模型进行图像分类,并将其部署到 Flask 应用中的项目,过程中遇到了不少挑战,也收获了满满的知识,迫不及待想和大家分享一下。
2025-04-15 18:53:21
842
原创 深入探究 GRU 模型:梯度爆炸问题剖析
在深度学习领域,循环神经网络(RNN)及其变体在处理序列数据时展现出了强大的威力。其中,门控循环单元(GRU)作为 RNN 的一种进阶架构,备受关注。今天,咱们就来深入聊聊 GRU 模型,重点探究一下它在训练过程中是否会出现梯度爆炸问题。
2025-04-14 20:35:28
1083
原创 《基于 RNN 的股票预测模型代码优化:从重塑到直接可视化》
通过对基于 RNN 的股票预测代码的优化,我们去掉了不必要的预测结果重塑操作,使代码更加简洁、健壮和高效。这种优化不仅提升了代码的质量,还为后续的开发和维护提供了便利。在实际开发中,我们应该时刻关注代码的简洁性和性能,不断优化代码,以提高开发效率和系统的稳定性。希望本文对大家理解代码优化的思路和方法有所帮助。如果你对 RNN 股票预测或代码优化有任何疑问,欢迎在评论区留言讨论。
2025-04-13 19:51:47
1113
原创 利用 RNN 预测股票价格:从数据处理到可视化实战
本项目旨在通过历史股票价格数据,训练一个 RNN 模型,使其能够对未来股票价格进行一定程度的预测。我们将使用 Python 作为主要编程语言,结合 NumPy、PyTorch 以及 Scikit-learn 等强大的库来实现这一目标。
2025-04-11 16:28:59
1696
2
原创 深入探索 PyTorch:回归与分类模型的全方位解析
在当今数据驱动的时代,机器学习与深度学习技术正广泛应用于各个领域,助力我们从海量数据中挖掘有价值的信息。而 PyTorch 作为一款备受青睐的深度学习框架,为开发者们提供了简洁且高效的工具来构建各类智能模型。本文将深入探讨基于 PyTorch 的线性回归、逻辑回归以及多分类模型,不仅涵盖基础理论与实现步骤,还会涉及模型优化、常见问题剖析等拓展内容,旨在为大家呈上一份详尽的学习指南。
2025-04-11 11:29:55
1407
原创 解锁深度学习激活函数
在深度学习的广袤天地里,激活函数宛如隐匿于神经网络架构中的神奇密码,掌控着模型学习与表达的关键力量。今天,就让我们一同深入探究这些激活函数的奇妙世界,揭开它们神秘的面纱。
2025-04-09 19:10:15
818
原创 深入理解深度学习模型的训练与评估模式:从基础组件到实战应用
在深度学习的奇妙世界里,模型就如同一个精心雕琢的艺术品,而正确运用训练与评估的方法及工具则是让这件艺术品绽放光芒的关键。以及逻辑回归背后的智慧。
2025-04-09 19:03:34
1074
原创 探索 TenseFlow:深度学习框架的新力量
TenseFlow 脱胎于对传统深度学习框架局限性的深入思考,旨在构建一个更加灵活、高效且易于使用的开发环境。它汲取了诸多前沿研究成果,融合了多种编程范式的优势,致力于满足从学术研究到工业应用的广泛需求。与一些广为人知的老牌框架相比,TenseFlow 在架构设计上采用了创新性的模块化理念,各个模块既能独立运作以实现特定功能,又能无缝协同,让开发者能够根据项目的独特要求自由组合、定制。
2025-04-07 19:49:15
1068
机器学习中数据处理 信用卡预测
2025-02-17
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅