自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(47)
  • 收藏
  • 关注

原创 C++ 面向对象(引用到友元部分)

本文介绍了C++面向对象编程中的引用和友元相关内容。主要内容包括:引用作为变量别名、函数参数和返回值的用法及注意事项;内存四区(代码区、全局区、栈区、堆区)的特点和管理方式;面向对象三大特征之一的封装,涉及访问权限、构造函数/析构函数、深/浅拷贝等概念;静态成员变量和函数的定义与使用。重点讲解了引用本质是指针常量,以及构造函数调用时机、拷贝构造函数的应用场景等核心知识点,为C++面向对象编程提供了基础理论支持。

2025-11-23 10:21:05 640

原创 C++基础部分复习

本文简要回顾了C++中的核心概念,包括数据类型、变量声明、常量、存储类、运算符、作用域规则、数组和指针。重点介绍了整数和浮点类型的基本数据类型,变量声明与定义的区别,以及左值和右值的概念。文章还详细讲解了数组的声明、初始化和传递方式,以及指针的基本操作、算术运算、指针数组和多级指针的使用。最后,总结了指针在函数参数传递和返回值中的应用,并推荐使用现代C++容器如std::vector来替代裸指针操作。

2025-11-23 10:15:21 771

原创 C++ 库函数介绍

本文系统介绍了C标准库的核心功能和组成。C标准库作为C语言编程基础,包含24个头文件,涵盖输入输出、字符串处理、数学计算、内存管理等核心功能。文章详细解读了<stdio.h>、<string.h>、<math.h>等主要头文件的关键函数,梳理了C89到C18标准的演进历程。同时介绍了C99/C11新增的复数运算、布尔类型等功能,并提供了安全编程和性能优化的实践建议。通过模块化设计,C标准库为不同应用场景提供高效、可移植的编程支持,是系统开发、嵌入式等领域的重要工具。

2025-11-19 09:33:12 462

原创 【C++】C++文件读写

本文总结了C++中函数与指针、结构体、文件操作及输入输出格式控制的关键要点。函数通过指针实现多值返回,形参指针用于处理大对象或需要修改实参的情况。结构体是自定义复合类型,C++中与class唯一区别是默认访问权限不同。文件操作推荐使用while(in>>x)循环读取,避免eof()误判。输入输出格式控制详细介绍了printf/scanf的常用说明符、宽度精度设置、进制转换、字符处理等核心用法,并列出常见错误写法。这些知识涵盖了C++基础编程中的核心技巧,适用于竞赛和笔试场景。

2025-11-13 20:50:05 825

原创 【C++】C++学习记录(变量-数组)

本文介绍了C++中常见变量类型及其大小、字符类型处理、signed与unsigned区别、浮点类型精度、自动类型转换、四舍五入方法、bool逻辑运算、指针操作、函数调用原理、循环结构以及数组和字符串处理。重点包括: 字符类型本质是ASCII码值存储 signed/unsigned影响取值范围但不改变内存大小 浮点数比较需使用fabs函数处理精度误差 指针本质是存储内存地址的整数 函数调用涉及栈操作和参数传递机制 字符串需以'\0'结尾 二维数组两种初始化方式

2025-11-13 19:25:28 1100

原创 【OJ速通】Enumerate 枚举介绍

文章摘要 本文介绍了枚举法在算法问题中的应用。首先解释了枚举的基本概念——通过尝试所有可能性来解决问题,并强调了优化枚举范围和顺序的重要性。然后以寻找数组中和为0的数对为例,展示了从O(n²)暴力枚举到使用桶排序优化为O(n)的改进过程。最后通过熄灯问题实践了枚举与贪心算法的结合:通过枚举第一行所有可能的按键组合,再用贪心策略依次处理后续行,当最后一行灯全灭时即找到解。文章通过具体代码实现展示了如何将枚举与其他算法策略结合,有效降低时间复杂度。

2025-11-10 02:32:50 548

原创 【深度学习】Residual Neural Networks 解析

ResNet: Addressing Deep Network Degradation with Residual Learning Residual Neural Networks (ResNet) tackle the degradation problem in deep networks by introducing skip connections that allow layers to learn residual functions. Instead of directly fitting

2025-11-09 23:19:02 990 2

原创 【深度学习】Batch Normalization 批量归一化解读

文章摘要: Batch Normalization (BN) 是一种用于加速深度神经网络训练的技术,通过减少内部协变量偏移(Internal Covariate Shift)来稳定梯度流动。其核心步骤包括计算小批量的均值和方差,归一化输入,并通过可学习的参数(γ, β)进行缩放和偏移。BN层通常置于线性层与激活函数之间,在卷积层中则独立处理每个通道。训练时使用当前批次的统计量,预测时采用移动平均的全局统计量。实现中需区分训练和推理模式,并维护γ、β参数以及移动均值和方差。BN不仅能加速收敛,还具有正则化效果

2025-11-09 22:05:22 922

原创 【深度学习】从 Alexnet 到 GoogLeNet(四大现代卷积网络详解)(含代码)

Abstract (150 words): This document examines modern CNN architectures, focusing on AlexNet and VGGNet. AlexNet, the 2012 ImageNet winner, introduced deeper networks (8 layers), ReLU activations, dropout regularization, and GPU acceleration, outperforming e

2025-11-09 21:14:57 779

原创 【深度学习】60 分钟 PyTorch 极速入门:从 Tensor 到 CIFAR-10 分类

作者:南方的狮子先生日期:2025-10关键词:PyTorch、深度学习、CNN、CIFAR-10、Autograd、CUDA、初学者。

2025-10-31 09:24:29 812

原创 【深度学习】卷积神经网络(CNN)入门:看图识物不再难!

本文介绍了卷积神经网络(CNN)的基本原理及其在图像识别中的应用。针对传统全连接网络处理图像时参数量过大的问题,CNN通过滑动窗口(卷积)和参数共享大幅减少参数量,同时具有平移不变性优势。文章详细解释了卷积运算、池化操作和零填充等核心概念,并提供了PyTorch实现示例。作者指出CNN通过局部连接、参数共享和特征提取等机制高效处理图像数据,最后推荐了学习进阶方向和实战项目。全文以直观类比和代码示例帮助初学者快速理解CNN工作原理。

2025-10-31 09:02:17 1723

原创 【深度学习】模型权重初始化与归一化细节(BatchNorm)

本文介绍了深度学习中权重初始化与归一化的关键技术。主要内容包括:1)权重初始化的三大忌讳(全零、过大/过小)及推荐方法(Xavier、Kaiming);2)数据预处理中的标准化与白化;3)批归一化(BN)的原理、公式及应用技巧;4)不同激活函数的特性比较与选择建议。此外还提供了PyTorch训练模板和常见问题排查表,帮助读者避免训练过程中的典型问题。文章强调合理初始化与归一化对网络训练效果的重要影响,是深度学习实践中的关键基础技术。

2025-10-31 08:21:14 1026

原创 【数据结构】从线性表到排序算法详解

本文系统介绍了数据结构与算法基础内容。首先对比线性表的顺序存储(随机访问高效但插入删除代价大)和链式存储(插入删除方便但访问效率低)。详细讲解了三大基础排序算法:直接插入排序(稳定、适合小数据)、简单选择排序(不稳定、交换次数少)、冒泡排序(稳定、可优化),均具有O(n²)时间复杂度。重点分析了归并排序的分治策略,通过递归分解和有序合并实现O(n log n)的高效排序,适合大规模稳定排序需求。最后提供了算法对比表和应用建议,指导根据数据规模、稳定性等需求选择合适的排序算法,并介绍了混合排序等优化技巧。

2025-10-29 10:18:31 403

原创 【数据结构】(C++数据结构)查找算法与排序算法详解

本文详细介绍了C++中的查找与排序算法。查找算法部分涵盖二分查找、插值查找和斐波那契查找,重点分析了它们的实现原理、代码示例和复杂度特征。排序算法部分则阐述了冒泡排序及其改进版本、归并排序的分治策略实现,以及基数排序的位处理机制。文中通过完整代码示例和数学公式推导,展示了各算法的核心思想与优化技巧,为数据结构学习提供了系统的算法参考。

2025-10-28 19:04:43 1232

原创 深入理解梯度下降:从批量到随机再到小批量

本文系统介绍了梯度下降的三种主要变体:批量梯度下降(BGD)、随机梯度下降(SGD)和小批量梯度下降(MBGD)。BGD使用整个数据集计算梯度,收敛稳定但计算量大;SGD每次更新基于单个样本,计算快但收敛不稳定;MBGD折中二者,采用小批量样本,兼具效率和稳定性。通过PyTorch实现和3D可视化,直观展示了三种方法在优化路径上的差异:BGD路径平滑但收敛慢,SGD路径震荡但可能跳出局部最优,MBGD则平衡了收敛速度和稳定性。实验结果表明MBGD是深度学习中最实用的优化方法。

2025-10-24 17:47:19 889

原创 【深度学习】深度学习核心:优化与正则化超详细笔记

想象一下,训练一个深度学习模型就像是在一个巨大、黑暗且地形复杂的山谷里寻找最低点(即损失函数的最小值)。优化就像是你的寻路策略。你是选择一步看一步(随机梯度下降),还是先观察整个山谷的地形再行动(批量梯度下降)?你是直来直去,还是借助惯性(动量)更快地滑行?正则化则像是给你的寻路装备增加约束。为了防止你只在训练走过的小路上表现优异(过拟合),你需要一些方法让自己变得更“皮实”,能适应各种未知的路况(泛化能力)。掌握好这两者,是训练出高性能深度学习模型的关键。

2025-10-24 17:42:12 926

原创 【人工智能】【lab】硬核实战:从零开始,用5种算法“解剖”鸢尾花!

文章摘要: 本文从零实现5种机器学习算法,以鸢尾花数据集为例,详细讲解了逻辑回归和决策树的原理与代码实现。逻辑回归部分通过Sigmoid函数实现二分类,包含梯度下降优化过程;决策树部分基于信息增益准则构建树结构,实现数据划分。两种算法均展示了完整的训练和预测流程,并通过准确率评估性能。代码注释清晰,适合机器学习初学者理解算法本质和实现细节。

2025-10-24 06:11:57 402

原创 【人工智能】监督学习核心方法

(如高斯核、多项式核)将数据映射到更高维的空间,让数据在新空间中变得线性可分,而计算复杂度却没有显著增加。决策树非常直观,就像一个流程图,每个节点代表一个问题,每个分支代表一个答案,最终每个叶节点代表一个决策。我们现在要做的不是预测一个连续值,而是做一个分类,比如判断邮件是否为垃圾邮件。:在模型后加一个“激活函数”,将输出压缩到[0,1]区间,代表概率。:SVM的目标就是最大化这个间隔,这使得模型具有很好的鲁棒性。它衡量的是一个特征带来的“不确定性减少的程度”。:在已知特征X的条件下,Y的不确定性。

2025-10-24 06:03:16 813

原创 【人工智能】【LAB】监督学习实验课核心考点与代码实战

摘要 本文总结了监督学习实验课的三大核心考点:线性回归实战、交叉验证和梯度下降。 线性回归:通过sklearn实现标准流程(数据加载、分割、训练、预测及可视化),并附代码示例。 交叉验证:重点讲解K折交叉验证的原理与实现,强调其稳定评估模型性能的作用,提供鸢尾花数据集的代码演示。 梯度下降:以函数最小化为例,解释梯度下降的数学原理和迭代公式,结合图示直观说明其优化过程。 最后提出两道练习题:对比线性回归与SVR模型的性能,以及手写一元线性回归的梯度下降实现,帮助巩固知识点。

2025-10-24 05:19:19 626

原创 【人工智能】AI入门必看:一文搞懂监督学习的核心思想

是选择用简单的线性公式(像一把尺子),还是用复杂的多项式公式(像一套精密的曲线板)?如果考得差,就得回去调整方法(比如换一个更复杂的模型,或者增加一些学习技巧)。PAC学习从数学上证明了,只要数据量足够,模型复杂度适中,我们就能学到一个好的模型。,就是把数据分成K份,轮流用其中K-1份做训练,剩下的1份做测试,最后取K次测试的平均成绩。:模型太复杂了,把数据中的噪声(偶然因素)都当成了规律来学习。就是让计算机通过“看”大量数据(经验),自动提升完成某项任务(识别猫狗)的能力(准确率)。

2025-10-24 05:05:41 1548

原创 【逻辑回归】从线性模型到逻辑回归

本文介绍了逻辑回归的基本原理及其在二元分类中的应用。首先解释了线性回归为何不适用于分类问题,随后通过购物决策的隐含变量故事引入逻辑回归的核心思想。文中详细推导了Logistic函数、似然函数和梯度下降公式,并用10行Python代码实现了一个简单的逻辑回归模型。核心在于通过S型函数将线性回归输出压缩到(0,1)区间作为概率,再通过设定阈值实现二元分类。全文以通俗易懂的方式呈现,适合初学者理解逻辑回归的基本概念和实现方法。

2025-10-21 18:47:14 824

原创 【线性回归入门】手搓线性回归:OLS vs LAD

文章摘要 本文手把手教你实现两种线性回归算法:最小二乘法(OLS)和最小绝对偏差(LAD)。内容包含: 数学推导:详细展示了OLS和LAD的公式推导过程,包括斜率b1和截距b0的计算方法 代码实现:提供完整的Python实现代码,无需额外库依赖 对比分析:通过生成含异常点的数据,直观展示OLS对异常值敏感,而LAD更具鲁棒性 实用技巧:介绍了Theil-Sen中位数斜率方法实现LAD回归 文章特别适合想深入理解回归算法原理的读者,代码可直接运行复现,帮助读者从理论到实践全面掌握这两种经典回归方法。

2025-10-21 17:18:05 1016

原创 《Can Large Language Models Play Text Games Well? Current State-of-the-Art and Open Questions》

这篇论文探讨了大型语言模型(LLM)在文本游戏中的表现。研究发现,像ChatGPT这样的LLM在玩《Zork》等文本游戏时,虽然能处理简单任务,但在构建完整世界模型和多步推理方面存在明显局限。实验表明,LLM难以通过阅读攻略建立空间认知,也无法有效推断高层次游戏目标。与经过专门训练的游戏AI相比,LLM表现欠佳。该研究揭示了LLM在复杂决策任务中的不足 siblings,同时肯定了文本游戏作为评估LLMführung рассуждающих способностей的有效工具。

2025-10-16 23:26:09 48

原创 《Skill Reinforcement Learning and Planning for Open-World Long-Horizon Tasks》:Plan4MC方法详解

Plan4MC是一种结合强化学习与大型语言模型的新型智能体规划方法,专为《Minecraft》等开放世界设计。该方法将复杂任务分解为三类基础技能(寻找、操作、制作),通过强化学习训练智能体掌握这些技能,同时利用语言模型构建技能依赖图进行任务规划。实验表明,Plan4MC在40项Minecraft任务中表现优异,尤其在长时序任务上显著优于基线方法,同时提高了样本效率。该方法展示了强化学习与规划技术在构建开放世界智能体方面的应用潜力。

2025-10-16 23:17:45 47

原创 开放世界多任务智能体:《Describe, Explain, Plan and Select: Interactive Planning with Large Language Models》

本文介绍了DEPS方法,这是一种结合大语言模型(LLM)的智能体规划新方法,用于解决开放世界中的多任务执行问题。DEPS通过"描述-解释-规划-选择"四个关键步骤实现动态任务调整:先描述当前状态,分析失败原因,重新生成计划,再选择最优子任务顺序。实验表明,该方法在《Minecraft》等复杂环境中显著提升了任务成功率,如钻石获取任务达到0.59%成功率,远超传统方法。DEPS的创新在于交互式规划和状态感知选择机制,但也存在依赖私有模型等局限性。研究为开放世界智能体规划提供了新思路。

2025-10-16 23:10:31 53

原创 构建智能饮食推荐系统:深入解读 FoodKG 语义知识图谱

FoodKG是一个面向个性化饮食推荐的大规模语义知识图谱,整合了100万+食谱、8000+食材营养数据和医学健康建议等多元信息。该图谱通过本体建模和语义映射构建了包含6700万三元组的知识网络,支持SPARQL语义查询和自然语言问答。典型应用包括为过敏人群筛选安全食谱、为糖尿病患者推荐低糖餐食等。作为当前最大规模的食品知识图谱之一,FoodKG为构建智能饮食推荐系统提供了标准化语义基础设施,未来计划扩展中餐数据和支持主观属性建模。项目已开源构建工具链和查询接口。

2025-10-16 19:25:38 452

原创 【人工智能】演化算法入门指南:从经典EP到快速EP的进化之路

🌱 演化算法入门指南:从经典EP到快速EP的进化之路 本文介绍了演化算法(EA)的基本概念,重点讲解了演化规划(EP)的两种变体:经典EP(CEP)和快速EP(FEP)。CEP采用高斯分布变异和自适应步长调整,适合局部精细搜索;FEP则利用柯西分布的长尾特性,更适合全局探索和跳出局部最优。文章通过对比实验数据,指出FEP在多峰函数和初始远离最优解时表现更优,并建议根据问题特性选择变异策略或采用混合方法。最后还介绍了Lévy分布作为介于高斯和柯西之间的灵活变异选择,能更好地平衡全局探索和局部开发。

2025-10-12 05:02:31 1270

原创 【深度学习】lecture4_lab补充内容:15分钟,带你从零彻底搞懂神经网络是怎么学习的!

摘要:本文通俗讲解神经网络反向传播原理,通过投篮类比说明"前向传播-损失计算-反向传播-参数更新"的学习过程。重点解析链式法则如何将误差梯度逐层分解,并强调激活函数非线性对模型能力的关键作用。文章提供了完整的NumPy实现代码,包括参数初始化、激活函数、前向/反向传播及损失计算,帮助读者从零理解并搭建两层神经网络。

2025-10-10 17:02:57 553

原创 【深度学习】lecture4 多层神经网络

本文介绍了多层神经网络与反向传播机制。文章首先解释了单层感知机的局限性,提出通过添加隐藏层和非线性激活函数来增强模型表达能力。重点讲解了三种常用激活函数(Sigmoid、Tanh、ReLU)的特性及适用场景。通过手写数字识别案例,展示了前向传播的计算流程。在反向传播部分,作者以"梯度快递"的比喻生动阐释了链式法则的运作原理,并提供了PyTorch实现示例和常见门电路的梯度规则。最后给出了矩阵版链式法则的实用小贴士,为理解深度学习中的梯度计算提供了清晰指导。

2025-10-10 06:57:59 904

原创 【深度学习】lecture4 反向传播

( w^{(t)} ) 和 ( w^{(t+1)} ) 是模型的参数状态。( \eta_t ) 控制更新的步长。( \nabla_{w^{(t)}} L ) 指示损失函数的下降方向。( L ) 量化了模型的误差。“前向存结果,反向链式传;本地 Jacobian,乘以上层梯;一步降学习,万卷梯度平。

2025-10-10 06:21:46 1356

原创 【Python matplotlib入门教程】用Python让五星红旗飘起来:一篇适合零基础的国庆编程入门教程

本文介绍了一个零基础Python教程,通过30行代码实现五星红旗飘扬动画效果。教程分为六个部分:展示飘扬的五星红旗动图效果(边缘正弦波浪)、逐步拆解代码的5个知识点(环境安装、坐标网格、波浪函数、五角星绘制、动画实现)、3个趣味修改建议(调整风速、速度、生成GIF)、可直接交作业的日记模板、常见问题解答,以及项目意义说明。读者只需30分钟就能运行这个爱国主题程序,适合编程初学者、教师或任何想在国庆期间尝试创意编程的人。文末提供了完整的代码和运行步骤,并鼓励大家分享这份"数字礼物"。

2025-10-01 15:48:25 1104

原创 【人工智能】进化算法是啥?——一堂给聪明懒人的“自然开挂”入门课

进化算法摘要 进化算法(EA)是一种模拟自然进化过程的优化方法,它通过"生成-测试-选择"的迭代机制寻找问题最优解。核心流程包括:1)随机生成初始解群体;2)评估解的适应度;3)选择优质个体进行交叉和变异;4)新一代替代旧群体。EA具有三大优势:无需梯度信息、擅长处理高维复杂问题、支持并行计算。典型算法包括遗传算法(GA)、进化策略(ES)等,已成功应用于航天、物流、建筑设计等领域。实现时需注意种群规模、变异概率等参数调优,Python的DEAP库提供了便捷的实现工具。

2025-09-28 18:29:10 941 1

原创 【人工智能】启发式搜索(Heuristic Search)完全入门指南

启发式搜索入门指南 核心概念:启发式搜索通过领域知识(启发函数h(s))优化路径规划,相比盲目搜索效率更高。A*算法结合已花代价(g(s))和预估剩余代价(h(s))实现最优解。 关键算法对比: 无信息搜索(BFS/DFS):盲目扩展,效率低 贪婪搜索:仅用h(s),快但不保证最优 A*算法:f(s)=g(s)+h(s),需h(s)可采纳(不高估) 典型应用: 路径规划:A*能找到最优路线 8-puzzle问题:曼哈顿距离作为启发函数 松弛问题生成可采纳启发式 性能优势:A的时间复杂度从指数级降至多项式级,

2025-09-28 17:34:53 1082 1

原创 【深度学习】 matplotlibIntro--图像处理以及数据可视化

本文介绍了在Jupyter中使用Matplotlib进行数据可视化的面向对象(OO)风格编程方法。主要内容包括:1) 环境配置要求(Python≥3.9及相关依赖库);2) 解决中文显示问题的通用方法;3) Matplotlib的两种编程风格对比,重点讲解面向对象风格中Figure(画布)和Axes(坐标轴)的分离概念;4) 通过代码示例演示了创建空白图表、添加子图(add_subplot方法)以及在同一图表中绘制多条曲线的具体实现。文章强调面向对象风格能避免plt.xxx全局状态混乱,提供更清晰的图表控制

2025-09-28 09:30:35 793 2

原创 【深度学习】lecture_3_Deep networks & backpropagation

这篇文章介绍了深度学习中的关键概念和方法。主要内容包括:1)机器学习的基本定义(任务T、性能P、经验E);2)线性回归示例和误差类型(训练/测试/泛化误差);3)模型容量与泛化能力的关系;4)感知机和深度神经网络结构;5)基于梯度的学习方法(反向传播)和常用损失函数(交叉熵);6)三种输出类型和隐藏单元激活函数(ReLU、sigmoid、tanh);7)网络架构设计原则;8)反向传播计算中的链式法则应用。文章系统性地讲解了从基础概念到深度网络设计的关键知识点。

2025-09-25 22:22:41 625 1

原创 【深度学习】Mathematical background(数学背景)(下)

本文摘要梳理了信息论与数值计算的核心概念。信息论部分涵盖伯努利变量熵、衡量分布近似信息损失的KL散度(具有不对称性)。数值计算部分包括:一阶导数、梯度下降原理(梯度为各方向偏导之和)、极值点判定;二阶导数相关内容涉及曲率计算、基于泰勒展开的最优步长推导。文末提及实验课将演示相关代码实现。

2025-09-25 17:59:26 237 1

原创 【深度学习】Lecture_2_Mathematical background(数学背景)(上)

这篇文章简要介绍了数学基础中的线性代数和概率论核心概念。在线性代数部分,解释了标量、向量、矩阵和张量的层级关系,其中张量是多维数组,涵盖标量(0D)、向量(1D)、矩阵(2D)及更高维结构。还概述了矩阵运算(转置、加减、数乘、乘积)、特殊矩阵(单位矩阵、迹)以及线性方程组解的存在唯一性条件。概率论部分涉及概率质量/密度函数的归一化特性,并提及方差、协方差和常见分布。文章整体是对关键数学概念的简明梳理,部分高级内容(如特征分解)因复习进度暂未展开。

2025-09-25 12:38:46 1090 1

原创 (南科大深度学习课程)Lecture 1_Introduction

张老师的研究方向涵盖计算机视觉、模式识别、医学图像分析等AI领域,课程内容包含MLP、CNN、RNN、GAN等深度学习模型。推荐教材包括《Deep Learning》等经典书籍,建议通过实践和ChatGPT辅助学习。联系方式:zhangjg@sustech.edu.cn。

2025-09-25 11:45:18 377

原创 Kimi-V2 api调用时返回 ... 问题 而不是完整内容的解决方法

摘要:用户在使用client.models.generate_content方法处理长文本对话时遇到内容不完整问题,表现为返回内容以省略号结尾导致JSON解析失败。解决方法是将请求方式改为流式传输,通过client.chat.completions.create设置stream=True,并逐块接收响应内容。该方案不仅能完整获取长文本,还能实现实时打字效果,对初学者具有参考价值。(149字)

2025-09-22 22:21:03 321 1

原创 PyTorch 基础入门与常用操作详解(含注释与输出)

本文系统介绍了PyTorch的基础操作,包括张量定义、与Numpy互转、常用创建函数(empty/rand/zeros)、维度变换、元素级运算和矩阵乘法等核心功能。通过示例代码展示了如何检查GPU可用性、在CPU/GPU间转换张量,并对比了Numpy与PyTorch的数据结构差异。所有代码均配有详细注释和实际输出结果,特别适合初学者快速掌握张量操作的基本方法。文中还提供了矩阵乘法、广播机制等进阶操作示例,为后续深度学习实践打下基础。

2025-09-19 11:04:12 523 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除