K-均值(K-means)聚类算法是一种常见且有效的无监督学习算法,用于将数据集中的样本分成 K 个不同的簇。该算法的工作原理是不断迭代地更新簇的中心点和将样本分配到最近的簇中,直到达到收敛条件为止。
算法步骤如下:
1. 初始化:随机选择 K 个样本作为初始簇的中心点。
2. 分配样本:计算每个样本到各个簇中心点的距离,并将样本分配给距离最近的簇。
3. 更新簇中心点:计算每个簇的样本的平均值作为新的中心点。
4. 重复步骤 2 和 3,直到满足收敛条件(例如,中心点不再改变或达到最大迭代次数)。
K-均值聚类算法的优点包括:
1. 简单且易于实现。
2. 可用于大规模数据集。
3. 对处理高维数据效果较好。
K-均值聚类算法的缺点包括:
1. 对初始中心点的选择敏感,可能会导致不同的聚类结果。
2. 需要事先确定簇的数量 K。
3. 对异常值敏感,可能会影响聚类结果。
4. 对非球形簇的聚类效果不佳。
综上所述,K-均值聚类算法在处理大规模数据集和简单数据集时效果较好,但对一些特殊情况下的数据表现可能不佳。在实际应用中,可以结合其他聚类算法或对数据进行预处理来提升聚类效果。