栈与队列:两种经典线性数据结构的深度解析

一、栈:LIFO 特性的完美诠释

(一)核心概念与抽象模型

  1. 定义与特性
    栈是一种严格遵循后进先出(LIFO)原则的线性数据结构,其操作被限制在栈顶(Top)进行。形象化理解:如同堆叠的餐盘,最后放置的餐盘最先被取用。

    • 压栈(Push):数据从栈顶插入,时间复杂度 O (1)
    • 出栈(Pop):数据从栈顶删除,时间复杂度 O (1)
    • 典型场景:函数调用栈(保存调用上下文)、表达式求值(处理运算符优先级)、历史记录回退(如浏览器的 “后退” 功能)。
  2. 逻辑模型与物理结构
    栈的逻辑结构是线性表,但物理实现有两种选择:

    • 数组实现:利用动态数组,通过top指针记录栈顶位置(下标从 0 或 - 1 开始),适合频繁尾操作
    • 链表实现:用单链表,头节点作为栈顶,插入 / 删除在头部进行,适合内存动态分配场景

(二)数组实现的工程细节(C 语言)

1. 结构体定义与初始化
typedef int STDataType;
typedef struct Stack {
    STDataType* data;     // 动态数组存储数据
    int top;              // 栈顶下标
    int capacity;         // 当前最大容量
} Stack;

void StackInit(Stack* stack) {
    stack->data = (STDataType*)malloc(4 * sizeof(STDataType));
    if (stack->data == NULL) 
    {        
        perror("malloc fali");
        return; // 内存分配失败处理
    }
    stack->top = 0;
    stack->capacity = 4;
}
2. 核心操作实现
  • 压栈(含扩容逻辑)
    void StackPush(Stack* stack, STDataType value) {
        // 检查是否需要扩容
        if (stack->top == stack->capacity - 1) {
            int newCapacity = stack->capacity * 2;
            STDataType* newData = (STDataType*)realloc(stack->data, newCapacity * sizeof(STDataType));
            if (newData == NULL) 
            {
                perror("realloc fail");
                return; // 扩容失败处理
            }
            stack->data = newData;
            stack->capacity = newCapacity;
        }
        stack->data[stack->top++] = value;
    }
    
  • 出栈(需处理栈空异常)
    void StackPop(Stack* stack) {
        if (StackEmpty(stack))
            return; // 空栈无法出栈
        stack->top--; // 直接调整指针,无需物理删除(懒删除)
    }
    
  • 获取栈顶元素
    STDataType StackTop(Stack* stack) {
        if (StackEmpty(stack)) 
            return; // 空栈访问异常
        return stack->data[stack->top];
    }
    
3. 复杂度分析
  • 压栈 / 出栈:均摊 O (1)(扩容时单次 O (n),但均摊后为常数)
  • 空间复杂度:O (n)(存储 n 个元素)

(三)典型应用:有效的括号

问题:判断字符串"()[]{}"是否括号匹配
算法步骤

  1. 遍历字符串,遇左括号({[则压栈
  2. 遇右括号) ] }则检查栈顶是否为对应左括号:                                                                                            匹配则出栈,不匹配则直接返回 false
  3.      遍历结束后,栈空则合法,否则剩余左括号未匹配

代码关键点:用字典(或 switch)建立左右括号映射关系,处理边界情况(如字符串长度为奇数直接非法)。

二、队列:FIFO 特性的典型代表

(一)核心概念与抽象模型

  1. 定义与特性
    队列是遵循先进先出(FIFO)原则的线性结构,插入操作在队尾(Rear),删除操作在队头(Front)。形象化理解:如同排队购票,先排队的人先接受服务。

    • 入队(Enqueue):数据从队尾插入,时间复杂度 O (1)
    • 出队(Dequeue):数据从队头删除,时间复杂度 O (1)
    • 典型场景:操作系统进程调度(如就绪队列)、网络请求缓冲、BFS 算法(逐层访问图节点)。
  2. 逻辑模型与物理结构

    • 链表实现:用双向链表或单链表,维护头指针(队头)和尾指针(队尾),适合频繁头尾操作
    • 数组实现:普通数组实现需移动元素(头删除低效),故更适合循环队列实现

(二)链表实现的工程细节(C 语言)

1. 结构体定义与初始化
typedef int QDataType;
// 队列节点
typedef struct QueueNode {
    QDataType value;
    struct QueueNode* next;
} QueueNode;

// 队列整体结构
typedef struct Queue {
    QueueNode* front; // 队头指针(指向第一个节点)
    QueueNode* rear;  // 队尾指针(指向最后一个节点)
    int size;         // 元素个数(优化:避免遍历计算长度)
} Queue;

void QueueInit(Queue* queue) {
    queue->front = queue->rear = NULL;
    queue->size = 0;
}
2. 核心操作实现
  • 入队(处理空队列场景)
    void QueuePush(Queue* queue, QDataType value) {
        QueueNode* newNode = (QueueNode*)malloc(sizeof(QueueNode));
        if (newNode == NULL)
        {
            peeror("malloc fail");
            return;
        }
        newNode->value = value;
        newNode->next = NULL;
        if (QueueEmpty(queue)) { // 空队列时头尾指针指向同一节点
            queue->front = queue->rear = newNode;
        } else { // 非空时尾指针的next指向新节点,尾指针后移
            queue->rear->next = newNode;
            queue->rear = newNode;
        }
        queue->size++;
    }
    
  • 出队(处理单节点队列)
    void QueuePop(Queue* queue) {
        if (QueueEmpty(queue)) 
            return;
        QueueNode* temp = queue->front;
        queue->front = queue->front->next; // 头指针后移
        free(temp); // 释放内存
        if (queue->front == NULL) { // 若删除后队列为空,尾指针置空
            queue->rear = NULL;
        }
        queue->size--;
    }
    
  • 获取队头 / 队尾元素
    QDataType QueueFront(Queue* queue) {
        if (QueueEmpty(queue))
            return;
        return queue->front->value;
    }
    QDataType QueueBack(Queue* queue) {
        if (QueueEmpty(queue)) 
            return;
        return queue->rear->value;
    }
    

(三)特殊实现:设计循环队列

1. 设计目标

避免普通数组队列 “假溢出” 问题(队尾到达数组末尾但头部有空闲空间),通过环形结构复用空间。

2. 关键参数与状态判断
typedef struct {
    int* data;       // 存储数组
    int front;       // 队头下标(指向实际队头元素)
    int rear;        // 队尾下标(指向队尾元素的下一个空位)
    int capacity;    // 数组容量(含一个预留空位)
} MyCircularQueue;
  • 队空条件front == rear
  • 队满条件(rear + 1) % capacity == front
  • 元素个数(rear - front + capacity) % capacity
3. 核心操作实现(入队为例)
bool MyCircularQueueEnQueue(MyCircularQueue* obj, int value) {
    if (MyCircularQueueIsFull(obj)) 
        return false;
    obj->data[obj->rear] = value; // 先赋值
    obj->rear = (obj->rear + 1) % obj->capacity; // 再移动指针
    return true;
}

三、深度对比:栈 vs 队列的本质差异

维度栈(Stack)队列(Queue)
数据访问原则后进先出(LIFO)先进先出(FIFO)
操作限制仅栈顶可插入 / 删除队尾插入、队头删除
典型底层实现数组(动态扩容,尾操作高效)链表(头尾指针,头删除高效)
空间特性栈顶指针移动,无需频繁内存分配节点动态创建 / 销毁,可能有碎片
适用算法深度优先搜索(DFS)、递归模拟广度优先搜索(BFS)、层次遍历
内存管理数组实现需处理扩容(均摊 O (1))链表实现需手动释放节点内存

四、进阶应用:数据结构的 “跨界” 实现

1. 用队列实现栈 

核心思路:维护两个队列q1q2,入栈时将元素加入非空队列,出栈时将非空队列的前 n-1 个元素转移到另一个队列,最后剩余元素即为栈顶。

  • 入栈操作push(x) → 加入非空队列(若均空则选q1
  • 出栈操作pop() → 将非空队列的元素依次出队并入队到另一个队列,直到剩 1 个元素,弹出该元素

2. 用栈实现队列

核心思路:两个栈inStackoutStack,入队时压入inStack,出队时若outStack为空则将inStack全部元素倒序压入outStack(实现 FIFO)。

  • 入队操作push(x) → inStack.push(x)
  • 出队操作pop() → 若outStack空,先将inStack全部转移到outStack,再弹出outStack栈顶

五、工程实践中的注意事项

1. 边界条件处理

  • 栈操作需检查栈空(避免越界访问)
  • 队列操作需检查队空(避免空指针解引用)
  • 循环队列需严格区分队空队满条件(通过预留空位或计数器)

2. 内存管理最佳实践

  • 数组实现的栈 / 队列:初始化时分配合理初始容量,扩容时使用realloc避免数据拷贝
  • 链表实现的队列:出队时必须释放节点内存,销毁队列时需遍历释放所有节点
  • 避免内存泄漏:建立 “初始化 - 使用 - 销毁” 的完整生命周期管理流程

3. 语言特性适配

  • C++:可直接使用 STL 的stack(底层 deque)和queue(底层 list/deque)
  • Python:collections.deque提供高效的头尾操作(替代原生 list 的pop(0)低效操作)
  • Java:java.util.Stack(过时,推荐用Deque实现),Queue接口有LinkedList等实现

六、总结:数据结构设计的本质

栈和队列的核心价值在于通过限制操作接口,实现特定的访问顺序。这种 “受限的数据访问” 思想是计算机科学的重要设计范式:

  • 栈的 LIFO 特性适合处理 “嵌套”“回溯” 场景(如函数调用、语法分析)
  • 队列的 FIFO 特性适合处理 “有序”“缓冲” 场景(如任务调度、数据流处理)

理解这两种结构,不仅要掌握 API 接口,更要深入底层实现(数组 vs 链表的选择、边界条件处理、内存管理),以及在算法设计中的灵活运用(如用栈模拟递归,用队列实现层序遍历)。它们是理解更复杂数据结构(如优先队列、双端队列)的基础,更是培养 “问题建模能力” 的重要切入点。

通过实际编码实现栈和队列的各个操作,处理各种边界情况,才能真正掌握其精髓 —— 这正是计算机科学 “从抽象到具体” 的工程思维体现。

附录

//stack.h
#pragma once
#include<stdio.h>
#include<stdlib.h>
#include<assert.h>
#include<stdbool.h>
// 支持动态增长的栈
typedef int STDataType;
typedef struct Stack
{
	STDataType* arr;
	int top;		// 栈顶
	int capacity;  // 容量 
}Stack;
// 初始化栈 
void StackInit(Stack* ps);
// 入栈 
void StackPush(Stack* ps, STDataType data);
// 出栈 
void StackPop(Stack* ps);
// 获取栈顶元素 
STDataType StackTop(Stack* ps);
// 获取栈中有效元素个数 
int StackSize(Stack* ps);
// 检测栈是否为空,如果为空返回非零结果,如果不为空返回0 
bool StackEmpty(Stack* ps);
// 销毁栈 
void StackDestroy(Stack* ps);
//stack.c
#define _CRT_SECURE_NO_WARNINGS 1
#include"Stack.h"
// 初始化栈 
void StackInit(Stack* ps)
{
	ps->arr = NULL;
	ps->capacity = ps->top = 0;
}
// 入栈 
void StackPush(Stack* ps, STDataType data)
{
	assert(ps);
	if (ps->capacity == ps->top)
	{
		int newcapacity = ps->capacity == 0 ? 4 : 2 * ps->capacity;
		STDataType* tmp = (STDataType*)realloc(ps->arr, newcapacity * sizeof(STDataType));
		if (tmp == NULL)
		{
			perror("realloc fail");
			exit(1);
		}
		ps->arr = tmp;
		ps->capacity = newcapacity;
	}
	ps->arr[ps->top++] = data;

}
// 检测栈是否为空,如果为空返回非零结果,如果不为空返回0 

bool StackEmpty(Stack* ps)
{
	assert(ps);
	return ps->top == 0;
}
// 出栈 
void StackPop(Stack* ps)
{
	assert(!StackEmpty(ps));
	--ps->top;
}
// 获取栈顶元素 
STDataType StackTop(Stack* ps)
{
	assert(!StackEmpty(ps));
	return ps->arr[ps->top - 1];
}
// 获取栈中有效元素个数 
int StackSize(Stack* ps)
{
	assert(!StackEmpty(ps));
	return ps->top;

}
// 销毁栈 
void StackDestroy(Stack* ps)
{
	if (ps->arr != NULL)
		free(ps->arr);
	ps->arr = NULL;
	ps->capacity = ps->top = 0;
}

队列

//Queue.h
#pragma once
#include<stdio.h>
#include<stdlib.h>
#include<assert.h>
#include<stdbool.h>

typedef int QDataType;
typedef struct QListNode
{
	struct QListNode* next;
	QDataType data;
}QNode;

// 队列的结构 
typedef struct Queue
{
	QNode* front;
	QNode* rear;
}Queue;

// 初始化队列 
void QueueInit(Queue* q);
// 队尾入队列 
void QueuePush(Queue* q, QDataType data);
// 队头出队列 
void QueuePop(Queue* q);
// 获取队列头部元素 
QDataType QueueFront(Queue* q);
// 获取队列队尾元素 
QDataType QueueBack(Queue* q);
// 获取队列中有效元素个数 
int QueueSize(Queue* q);
// 检测队列是否为空,如果为空返回非零结果,如果非空返回0 
bool QueueEmpty(Queue* q);
// 销毁队列 
void QueueDestroy(Queue* q);
//Queue.c
#define _CRT_SECURE_NO_WARNINGS 1
#include"Queue.h"
// 初始化队列 
void QueueInit(Queue* q)
{
	q->front = q->rear = NULL;
}
// 队尾入队列 
void QueuePush(Queue* q, QDataType data)
{
	QNode* newnode = (QNode*)malloc(sizeof(QNode));
	if (newnode == NULL)
	{
		perror("malloc fail1");
		exit(1);
	}
	newnode->data = data;
	newnode->next = NULL;
	if (q->front == NULL)
	{
		q->front = q->rear = newnode;
	}
	else
	{
		q->rear->next = newnode;
		q->rear = newnode;
	}
}
// 检测队列是否为空,如果为空返回非零结果,如果非空返回0 
bool QueueEmpty(Queue* q)
{
	assert(q);
	return q->front == NULL;
}
// 队头出队列 
void QueuePop(Queue* q)
{
	assert(!QueueEmpty(q));
	if (q->front == q->rear)
	{
		free(q->front);
		q->front = q->rear = NULL;
	}
	else
	{
		QNode* tmp = q->front->next;
		free(q->front);
		q->front = tmp;
	}
}
// 获取队列头部元素 
QDataType QueueFront(Queue* q)
{
	assert(!QueueEmpty(q));
	return q->front->data;
}
// 获取队列队尾元素 
QDataType QueueBack(Queue* q)
{
	assert(!QueueEmpty(q));
	return q->rear->data;

}
// 获取队列中有效元素个数 
int QueueSize(Queue* q)
{
	assert(q);
	int count = 0;
	QNode* tmp = q->front;
	while (tmp != NULL)
	{
		count++;
		tmp = tmp->next;
	}
	return count;
}
// 销毁队列 
void QueueDestroy(Queue* q)
{
	assert(q);
	QNode* pcur = q->front;
	while (q->front)
	{
		QNode* tmp = q->front->next;
		free(q->front);
		q->front = tmp;
	}
	q->front = q->rear = NULL;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值